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Anaconda (Python distribution) 
Anaconda is a free and open-source distribution of 

the Python and R programming languages for scientific computing (data 

science,machine learning applications, large-scale data 

processing, predictive analytics, etc.), that aims to simplify package 

management and deployment. Package versions are managed by 

the package management system Conda. Anaconda distribution is used 

by over 15 million users and includes more than 1500 popular data-

science packages suitable for Windows, Linux, and MacOS. 

Anaconda can be downloaded from www.anaconda.org. 

 

The core packages of Anaconda are: 

Anaconda Platform Document: 5.2.0-July/2019 (211 pages) 

SciPy: Reference Guide Release 1.3.0-May/2019 (2535 pages). 

Matplotlib: Release 3.1.1-July/2019 (2354 pages). 

Pandas: Powerful Python data analysis toolkit Release 0.25.0-July/2019 

(2827 pages). 

NumPy: Reference Release 1.16.1-January/2019 (1372 pages).  

Anaconda Navigator:  

Is a desktop graphical user interface (GUI) included in Anaconda 

distribution that allows users to launch applications and manage conda 

packages, environments and channels without using command-line 

commands. Navigator can search for packages on Anaconda Cloud or in 

a local Anaconda Repository, install them in an environment, run the 

packages and update them. It is available for Windows, macOS and 

Linux. 

 

The following applications are available by default in the 

Navigator: 

Rstudio, Jupyter Notebook, JupytertLab, Spyder, Glue, and Orange. 

The default environment is Python 3.6, but you can easily install Python 

3.5, Python 2.7 or R. The above documentation is incredibly detailed and 

there is an excellent community of users for additional support. 
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Anaconda Navigator on Startup

Python is the programming language which will be installed on the
machine and on top of that different IDEs and packages can be installed.
Python on it’s own is not going to be very useful unless an IDE is
installed. This is where Anaconda comes in the picture. Anaconda installs
IDEs and several important packages like NumPy, Pandas, and so on, and
this is a very convenient package which can be downloaded and
installed.
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Introduction to This Booklet
Python applications are very huge and it is very widely used in
Engineering and Non-Engineering fields.
The Python programming language is widely used by companies around
the world to build web, analyze data, automate operations via DevOps
and create reliable scalable enterprise applications.
Many companies do not even realize they are using Python across their
organizations. For example, if a company is a "Java-only shop" but they
use IBM WebSphere as a web application server then they have to use
Python to script the server's configuration!. Python has a habit of getting
in everywhere regardless of whether the usage is intentional.

The 8 World-Class Software Companies That Use Python:

- Industrial Light and Magic
- Google
- Facebook
- Instagram
- Spotify
- Quora
- Netflix
- Dropbox
- Reddit

This booklet is not a textbook or a solution manual covering a certain
subject with hundreds of pages. It is a booklet with few selected topics
and application examples, the goal of which is to make a short cut to the
subjects covered.  The readers can modify the examples to suit their
own application without digging much in Python, if they want.
However, the readers can easily refer to the very huge number of text
books, tutorials and research papers etc available elsewhere.
This booklet is not intended for the beginners, but to be a guide line for
the methodology of the applications of the programs listed in the
articles. I assume that the readers should have some basic knowledge in
using Anaconda/Jupyter and especially in Python programming
language.
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The articles listed below that I chose in this booklet, though few, were
selected among the unlimited number of subjects covered in the various
textbooks, tutorials and research papers and these are:

- Pint for unit conversion.
- SchemDraw.
- Linear regression and machine learning.
- Symbolic Math (SymPy) and ODE.
- Linear Optimization using Pulp.
- Linear and Non-Linear Optimization using SciPy.

Throughout this booklet, we will use Jupyter Notebook for
programming.

Ahmad A.M. Allawi
Consultant Electrical Engineer-Lecturer
Parametric Technology Corporation (PTC) Community Member
No.4009681 – USA
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1 - Pint for Unit Conversion



9/3/2019 Unit Conversion

localhost:8889/notebooks/THE BOOK/1-Unit Conversion/Unit Conversion.ipynb 1/6

Units Conversion

In [1]:

0.3333333333333333 mole / liter 

# Pint For Units Conversion 
 Pint library is used for unit conversion.
 
 Pint has to be downloded using Anaconda Prompt:
 
 With the internet connected, type after the prompt sign > pip install pint
 
 This will install Pint Version 0.9 or later.

# Working with Units in Python using the pint library
There are a number of python libraries that incorporate units to be used with python 
calculations. 

Among these, pint is a relatively new library that builds on experience with earlier 
attempts.

The core concept in pint is to work with a unit registry (ur), which is created as shown 
below:

# Example-1: Chemical Engineering

# The unit registry provides a simple means to assign units 
# using the multiplication operator.

# For example, here's how to compute the molarity of a sodium chloride solution 
# in 58.44 grams of NaCl (mw = 58.44)

# has been dissolved in water to form 3 liters of solution.

from pint import UnitRegistry

ur = UnitRegistry()

# problem data
V = 3.0 * ur.liters
m = 58.44 * ur.grams
mw = 58.44 * ur.grams/ur.mol

# compute molarity
C = m/(mw*V)

print(C)
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In [3]:

In [4]:

0.5 kilogram / gallon 
132.08602617907425 gram / liter 

132.08602617907425 gram / liter 

# Example-2

# In Unit Conversion Each variable with units has to() and ito() methods 
# for converting the quantity to a 
# desired set of units.

# The to() method is used to create a new variable by converting 
# an existing variable to the indicated units.

x = 0.5 * ur.kilograms/ur.gallon
y = x.to(ur.grams/ur.liter)

print(x)

print(y)

# The ito() method converts an existing variable 'in-place'.

x = 0.5 * ur.kilograms/ur.gallon
x.ito(ur.grams/ur.liter)

print(x)
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In [5]:

In [8]:

0.0028519279032626055 mole * pound / gallon / gram 
0.3417363316133261 mole / liter 
1.2936127367100163 mole / gallon 

24.0 meter 
8.0 second 
<Quantity(8.0, 'second')> 

# Example-3

# Here's how to compute the molarity of a sodium chloride solution in which 
# a 0.5 pounds of NaCl (mw = 58.44)
# has been dissolved in water to form 2 gallons of solution.

# problem data

V = 3.0 * ur.gallons
m = 0.5 * ur.lbs
mw = 58.44 * ur.grams/ur.mol

# compute concentration

C = m/(mw*V)
print(C)

# convert to desired units and print

C = C.to(ur.mol/ur.liter)
print(C)

# convert to moles per gallon

C.ito(ur.mol/ur.gallon)

print(C)

# Example-4 (Simple One)

distance = 24.0 * ur.meter

time = 8.0 * ur.second

# Unit Check

speed = distance / time

print(speed)
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In [11]:

In [16]:

Units and Conversions for Home Heating
This will demonstrates unit conversions for several typical calculations of energy consumption.

Heating with Electricity:

A typical energy efficient home requires 50 million BTUs to heat the home for the winter. If the price of electricity
is $0.08 per kilowatt hour, what would be the cost to heat a typical home with electricity?

Solution

In [17]:

Heating with Natural Gas

Natural gas is transported by pipeline from producing areas of the country to the midwest where it stored prior
to distribution. For heating purposes, the energy content of natural gas is 1000 BTU per cubic foot at 1 atm and
15 ∘C.

193414489032258.03 hertz 
193.41448903225802 terahertz 

77.72000039999993 degF 

Winter heating cost = 1171.41 USD 

# Example-5

wavelength = 1550 * ur.nm
frequency = (ur.speed_of_light / wavelength).to('Hz')
print(frequency)
print(frequency.to_compact())

# Example-6 ( Converting Deg.C to Deg.F)

home = Q_(25.4, ur.degC)

print(home.to('degF'))

Q_btu = 50e6               # BTU

price = 0.08               # USD per kwh
btu_per_joule = 9.486e-4   # conversion factor
kwh_per_joule = 2.778e-7   # conversion factor

cost = price*kwh_per_joule*Q_btu/btu_per_joule

print("Winter heating cost =", round(cost,2), "USD")
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If the natural gas is stored at 1000 psia and 15 ∘C, how large a storage tank is required to store natural gas for
the winter?

Give your answer in cubic meters.

Solution

The volume of natural gas required is determined by the heating requirement.

In [18]:

In [19]:

Sizing a Propane Storage Tank
Liquid propane has a heating value of 46.3 MJ/kg, and a specific gravity of 0.493 at ambient temperatures.

How large a storage tank will be required, in cubic meters.

Solution

518.7 degrees Rankine 
132.0 lb-mols 

Storage volume of natural gas at 1000 psia and 15 deg C = 20.8 cubic meters 

V_ft3 = Q_btu/1000    # ft^3

# Next compute the amount of natural gas required in lb moles

R = 10.73          # ft^3 psia/(lbmol R)
T_degC = 15        # deg C

# convert temperature to absolute

T_degR = 9.0*T_degC/5.0 + 491.67   # deg R

# compute lb moles

n_lbmol = 14.696*V_ft3/(R*T_degR)

print(round(T_degR, 1), "degrees Rankine")

print(round(n_lbmol, 1), "lb-mols")

# Now calculate the volume in cubic meters at the storage conditions.

V_ft3 = n_lbmol*R*T_degR/1000.0

m3_per_ft3 = 0.028317

V_m3 = V_ft3*m3_per_ft3

print("Storage volume of natural gas at 1000 psia and 15 deg C =", round(V_m3,1), "cubic me
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In [20]:

In [ ]:

Heat requirement = 52709.3 Megajoules 
Mass of propane required = 1138.43 kg 
Volume of propane required = 2.31 cubic meters 

btu_per_joule = 9.486e-4

Q_joule = Q_btu/btu_per_joule
print("Heat requirement =", round(Q_joule/1e6,1), "Megajoules")

m_kg = Q_joule/46.3e6
print("Mass of propane required = {0:.2f} kg".format(m_kg))

V_m3 = m_kg/0.493/1000.0

print("Volume of propane required = {0:.2f} cubic meters".format(V_m3))
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2 – SchemDraw
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Schem Draw
Drawing quality electrical schematics is one of those tasks that always takes too long. 
Most software for the job 
focuses on fancy circuit simulations and doesn't care about appearance. Constantly facing 
the dilemma of how to 
draw simple schematic diagrams.

SchemDraw is electrical engineering package and is not part of Anaconda library and 
should be downloaded and 
installed using Anaconda prompt:

Wth the internet connected, type pip install schemdraw.

The latest version I have downloaded is 0.4.0.

SchemDraw covers electrical components such 
as,Resistors,Capacitors,Inductors,Transformers,Diodes,Transistors etc.

Here I will demonstrate how to use schemdraw through some examples.
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In [24]:

# Example-1

# Resistor and Capacitor connected in series to a DC power supply

# Importing required libraries

import SchemDraw as schem

import SchemDraw.elements as e    # e, stands for elements or components

d = schem.Drawing()

# Drawing the Circuit

# We need a voltage source defined by label and a SOURCE

V1 = d.add(e.SOURCE_V, label='10V')

# Adding a horizontal resistor of value 100 KOhm 

d.add(e.RES, d='right', label='100K$\Omega$')

# Add vertical capacitor

d.add(e.CAP, d='down', botlabel='0.1$\mu$F')

# Connect a line to the Source voltage

d.add(e.LINE, to=V1.start)

# Add a Ground

d.add(e.GND)

# Draw the circuit

d.draw(showplot=False)

# Save the circuit

d.save('testschematic.eps')
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In [2]:

# Example-2

import SchemDraw as schem
import SchemDraw.elements as e

d = schem.Drawing(unit=5)   # Unit will affect circuit size
V1 = d.add(e.SOURCE_V, label='$20V$')
R1 = d.add(e.RES, d='right', label='400$\Omega$')
d.add(e.DOT)
d.push()
R2 = d.add(e.RES, d='down')
R2.add_label('100$\Omega$', loc='center', ofst=[-.9,.05])
d.add(e.DOT)
d.pop()
L1 = d.add(e.LINE)
I1 = d.add(e.SOURCE_I, d='down', botlabel='1A')
L2 = d.add(e.LINE, d='left', tox=V1.start)
d.loopI([R1,R2,L2,V1], '$I_1$', pad=1.25)
# Use R1 as top element for both so they get the same height
d.loopI([R1,I1,L2,R2], '$I_2$', pad=1.25)
d.draw(showplot=False)
d.save('loop_current.svg')
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In [3]:

# Example-3

import SchemDraw as schem
import SchemDraw.elements as e

d = schem.Drawing()
V1 = d.add(e.SOURCE_V, label='5V')
d.add(e.LINE, d='right', l=d.unit*.75)
S1 = d.add(e.SWITCH_SPDT2_CLOSE, d='up', anchor='b', rgtlabel='$t=0$')
d.add(e.LINE, d='right', xy=S1.c,  l=d.unit*.75)
d.add(e.RES, d='down', label='$100\Omega$', botlabel=['+','$v_o$','-'])
d.add(e.LINE, to=V1.start)
d.add(e.CAP, xy=S1.a, d='down', toy=V1.start, label='1$\mu$F')
d.add(e.DOT)
d.draw(showplot=False)
d.save('cap_charge.svg') 
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In [4]:

# Example-4 : A Power Supply

import SchemDraw as schem
import SchemDraw.elements as e

d = schem.Drawing(inches_per_unit=.5, unit=3)
D1 = d.add(e.DIODE, theta=-45)
d.add(e.DOT)
D2 = d.add(e.DIODE, theta=225, reverse=True)
d.add(e.DOT)
D3 = d.add(e.DIODE, theta=135, reverse=True)
d.add(e.DOT)
D4 = d.add(e.DIODE, theta=45)
d.add(e.DOT)

d.add(e.LINE, xy=D3.end, d='left', l=d.unit*1.5)
d.add(e.DOT_OPEN)
d.add(e.GAP, d='up', toy=D1.start, label='AC IN')
d.add(e.LINE, xy=D4.end, d='left', l=d.unit*1.5)
d.add(e.DOT_OPEN)

top = d.add(e.LINE, xy=D2.end, d='right', l=d.unit*3)
Q2 = d.add(e.BJT_NPN_C, anchor='collector', d='up', label='Q2\n2n3055')
d.add(e.LINE, xy=Q2.base, d='down', l=d.unit/2)
Q2b = d.add(e.DOT)
d.add(e.LINE, d='left', l=d.unit/3)
Q1 = d.add(e.BJT_NPN_C, anchor='emitter', d='up', label='Q1\n    2n3054')
d.add(e.LINE, d='up', xy=Q1.collector, toy=top.center)
d.add(e.DOT)

d.add(e.LINE, d='down', xy=Q1.base, l=d.unit/2)
d.add(e.DOT)
d.add(e.ZENER, d='down', reverse=True, botlabel='D2\n500mA')
d.add(e.DOT)
G = d.add(e.GND)
d.add(e.LINE, d='left')
d.add(e.DOT)
d.add(e.CAP_P, botlabel='C2\n100$\mu$F\n50V', d='up', reverse=True)
d.add(e.DOT)
d.push()
d.add(e.LINE, d='right')
d.pop()
d.add(e.RES, d='up', toy=top.end, botlabel='R1\n2.2K\n50V')
d.add(e.DOT)

d.here = [d.here[0]-d.unit, d.here[1]]
d.add(e.DOT)
d.add(e.CAP_P, d='down', toy=G.start, label='C1\n 1000$\mu$F\n50V', flip=True)
d.add(e.DOT)
d.add(e.LINE, xy=G.start, tox=D4.start, d='left')
d.add(e.LINE, d='up', toy=D4.start)

d.add(e.RES, d='right', xy=Q2b.center, label='R2', botlabel='56$\Omega$ 1W')
d.add(e.DOT)
d.push()
d.add(e.LINE, d='up', toy=top.start)
d.add(e.DOT)
d.add(e.LINE, d='left', tox=Q2.emitter)
d.pop()
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In [5]:

d.add(e.CAP_P, d='down', toy=G.start, botlabel='C3\n470$\mu$F\n50V')
d.add(e.DOT)
d.add(e.LINE, d='left', tox=G.start, move_cur=False)
d.add(e.LINE, d='right')
d.add(e.DOT)
d.add(e.RES, d='up', toy=top.center, botlabel='R3\n10K\n1W')
d.add(e.DOT)
d.add(e.LINE, d='left', move_cur=False)
d.add(e.LINE, d='right')
d.add(e.DOT_OPEN)
d.add(e.GAP, d='down', toy=G.start, label='$V_{out}$')
d.add(e.DOT_OPEN)
d.add(e.LINE, d='left')

d.draw(showplot=False)
d.save('powersupply.svg')

# Example-5

import SchemDraw as schem
import SchemDraw.elements as e

colors = ['red', 'orange', 'yellow', 'yellowgreen', 'green', 'blue', 'indigo', 'violet']
d = schem.Drawing()
for i in range(8):
    d.add(e.RES, label='R%d'%i, theta=45*i+20, color=colors[i])
d.draw(showplot=False)
d.save('Rcircle.svg')
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In [6]:

Solving Circuit Diagram Problem with Python and
SchemDraw
In [7]:

# Example-6: An OP Amp

import matplotlib.pyplot as plt

import SchemDraw as schem
import SchemDraw.elements as e

plt.xkcd()

d = schem.Drawing(inches_per_unit=.5)
op = d.add(e.OPAMP)
d.add(e.LINE, d='left', xy=op.in2, l=d.unit/4)
d.add(e.LINE, d='down', l=d.unit/5)
d.add(e.GND)
d.add(e.LINE, d='left', xy=op.in1, l=d.unit/6)
d.add(e.DOT)
d.push()
Rin = d.add(e.RES,d='left',xy=op.in1-[d.unit/5,0],botlabel='$R_{in}$',lftlabel='$v_{in}$')
d.pop()
d.add(e.LINE, d='up', l=d.unit/2)
Rf = d.add(e.RES,  d='right', l=d.unit*1, label='$R_f$')
d.add(e.LINE, d='down', toy=op.out)
d.add(e.DOT)
d.add(e.LINE, d='left', tox=op.out)
d.add(e.LINE, d='right', l=d.unit/4, rgtlabel='$v_{o}$')

d.draw()

d.save('ex_xkcd.svg')

import matplotlib.pyplot as plt
%matplotlib inline
# if high-resolution images are desired: 
# include %config InlineBackend.figure_format = 'svg'
%config InlineBackend.figure_format = 'svg'
import SchemDraw as schem
import SchemDraw.elements as e
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In [8]:

# Here we will Draw the circui diagram

d = schem.Drawing(unit=2.5)
R7 = d.add(e.RES, d='right', botlabel='$R_7$')
R6 = d.add(e.RES, d='right', botlabel='$R_6$')
d.add(e.LINE, d='right', l=2)
d.add(e.LINE, d='right', l=2)
R5 = d.add(e.RES, d='up' , botlabel='$R_5$')
R4 = d.add(e.RES, d='up', botlabel='$R_4$')
d.add(e.LINE, d='left', l=2)
d.push()
R3 = d.add(e.RES, d='down', toy=R6.end, botlabel='$R_3$')
d.pop()
d.add(e.LINE, d='left', l=2)
d.push()
R2 = d.add(e.RES, d='down', toy=R6.end, botlabel='$R_2$')
d.pop()
R1 = d.add(e.RES, d='left', tox=R7.start, label='$R_1$')
Vt = d.add(e.BATTERY, d='up', xy=R7.start, toy=R1.end, label='$V_t$', lblofst=0.3)
d.labelI(Vt, arrowlen=1.5, arrowofst=0.5)
d.draw()
d.save('7_resistors_3_loops.png')
#d.save('7_resistors_3_loops.pdf')

# Find:

# V6 and V7, the voltage drop across resistors R6 and R7

# I3 and I6, the current running through resistors R3 and R6

# P4 and P7, the power dissipated by resistors R4 and R7
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In [9]:

In [10]:

R45 = 0.0271 Ohm, R67 = 0.0096 Ohm 

# Circuit Values

Vt = 5.2

R1 = 0.0132
R2 = 0.021
R3 = 0.00360
R4 = 0.0152
R5 = 0.0119
R6 = 0.0022
R7 = 0.00740

# Simplify the circuit

R45 = R4 + R5     # Series values of R4 and R5
R67 = R6 + R7     # Series values of R6 and R7
# Print Results
print(f'R45 = {round(R45,7)} Ohm, R67 = {round(R67,5)} Ohm')
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In [11]:

In [12]:

R2345 = 0.0027602 Ohm 

# Redraw the circuit showing the combined resistors

d = schem.Drawing(unit=2.5)
R67 = d.add(e.RES, d='right', botlabel='$R_{67}$')
d.add(e.LINE, d='right', l=2)
d.add(e.LINE, d='right', l=2)
R45 = d.add(e.RES, d='up', botlabel='$R_{45}$')
d.add(e.LINE, d='left', l=2)
d.push()
R3 = d.add(e.RES, d='down', toy=R67.end, botlabel='$R_3$')
d.pop()
d.add(e.LINE, d='left', l=2)
d.push()
R2 = d.add(e.RES, d='down', toy=R67.end, botlabel='$R_2$')
d.pop()
R1 = d.add(e.RES, d='left', tox=R67.start, label='$R_1$')
Vt = d.add(e.BATTERY, d='up', xy=R67.start, toy=R1.end, label='$V_t$', lblofst=0.3)
d.labelI(Vt, arrowlen=1.5, arrowofst=0.5)
d.draw()
d.save('5_resistors_3_loops.png')
#d.save('5_resistors_3_loops.pdf')

# Finding parallel combination of resistors R2, R3 and R45

Vt = 5.2

R1 = 0.0132
R2 = 0.021
R3 = 0.00360
R4 = 0.0152
R5 = 0.0119
R6 = 0.0022
R7 = 0.00740

R45 = R4 + R5
R67 = R6 + R7

R2345 = ((1/R2)+(1/R3)+(1/R45))**(-1)
print(f'R2345 = {round(R2345,7)} Ohm') 
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In [13]:

In [14]:

Rt = 0.0255602 Ohm 

# Further simplifying the circuit by combining resistors

d = schem.Drawing(unit=2.5)
R67 = d.add(e.RES, d='right', botlabel='$R_{67}$')
R345 = d.add(e.RES, d='up' , botlabel='$R_{2345}$')
R1 = d.add(e.RES, d='left', tox=R67.start, label='$R_1$')
Vt = d.add(e.BATTERY, d='up', xy=R67.start, toy=R1.end, label='$V_t$', lblofst=0.3)
d.labelI(Vt, arrowlen=1.5, arrowofst=0.5)
d.draw()
d.save('3_resistors_1_loop.png')
#d.save('3_resistors_1_loop.pdf')

# Finding the total resistance value

Vt = 5.2

R1 = 0.0132
R2 = 0.021
R3 = 0.00360
R4 = 0.0152
R5 = 0.0119
R6 = 0.0022
R7 = 0.00740

R45 = R4 + R5
R67 = R6 + R7

R2345 = ((1/R2)+(1/R3)+(1/R45))**(-1)

Rt = R1 + R2345 + R67
print(f'Rt = {round(Rt,7)} Ohm')
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In [15]:

In [16]:

In [17]:

It = 203.44 A 

V6 = 0.44757 V, V7 = 1.50547 V 

# Last circuit diagram including Vt and Rt

d = schem.Drawing(unit=2.5)
L2 = d.add(e.LINE, d='right')
Rt = d.add(e.RES, d='up' , botlabel='$R_{t}$')
L1 = d.add(e.LINE, d='left', tox=L2.start)
Vt = d.add(e.BATTERY, d='up', xy=L2.start, toy=L1.end, label='$V_t$', lblofst=0.3)
d.labelI(Vt, arrowlen=1.5, arrowofst=0.5)
d.draw()
d.save('1_resistor_no_loops.png')
#d.save('1_resistor_no_loops.pdf')

# Finding total current It 

Vt = 5.2

R1 = 0.0132
R2 = 0.021
R3 = 0.00360
R4 = 0.0152
R5 = 0.0119
R6 = 0.0022
R7 = 0.00740

R45 = R4 + R5
R67 = R6 + R7

R2345 = ((1/R2)+(1/R3)+(1/R45))**(-1)
Rt = R1 + R2345 + R67

It = Vt/Rt
print(f'It = {round(It,2)} A')

# Voltage drop V6 and V7

I6 = It
I7 = It
V6 = I6 * R6
V7 = I7 * R7
print(f'V6 = {round(V6,5)} V, V7 = {round(V7,5)} V')
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In [18]:

In [19]:

In [20]:

In [21]:

In [22]:

V2345 = 0.56153 V 

I3 = 155.98 A, I6 = 203.44 A 

P7 = 306.27 W 

I45 = 20.721 A 

P4 = 6.5261 W 

I2345 = It
V2345 = I2345 * R2345
print(f'V2345 = {round(V2345,5)} V')

# I3 and I6

V3 = V2345
I3 = V3 / R3
I6 = It
print(f'I3 = {round(I3,2)} A, I6 = {round(I6,2)} A')

# Power in resistor R7
I7 = It
P7 = R7 * I7**2
print(f'P7 = {round(P7,2)} W')

# Current in R45

V45 = V2345
I45 = V45/R45
print(f'I45 = {round(I45,3)} A')

# Power in R4

I4 = I45
P4 = R4 * I4**2
print(f'P4 = {round(P4,4)} W')
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In [23]:

Conclusion
SchemDraw is a great package for making circuit diagrams in Python. Python is also useful for doing
calculations that involve lots of different values. Although none of the calculations in this problem were
particularly difficult, keeping track of all the values as variables in Python can cut down on errors when there
multiple calculations and many parameters to keep track of.

In [ ]:

V6 = 0.448 V 
V7 = 1.51 V 
I3 = 156.0 A 
I6 = 203.0 A 
P4 = 6.53 W 
P7 = 306.0 W 

# Printing the results

print(f'V6 = {round(V6,3)} V')
print(f'V7 = {round(V7,2)} V')
print(f'I3 = {round(I3,0)} A')
print(f'I6 = {round(I6,0)} A')
print(f'P4 = {round(P4,2)} W')
print(f'P7 = {round(P7,0)} W')
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Multiple Linear Regression
In the following example, we will use multiple linear regression to predict the Output of a fictitious System.

By using 2 independent variables/inputs, namely Input_1 and Input_2 and one System Output.

It is assumed that inputs to the System are read evry one hour and the output is recorded.

We will use Tkinter which is a Graphical User Interface (GUI). This will facilitate the inputs of the data by the
users.

So it makes sense to create for them a simple interface, via widgets, where they can manage the data in a
simplified

manner, and this is why we will use Tkinter objects for this purpose to enter the values and to display the
predicted results.

Also displayed the Ordinary Least-Squares (OLS) statistics and our equation constant and coefficients.

OLS is defined as follows:

Ordinary least-squares (OLS) regression is a generalized linear modelling technique that may be used to

model a single response variable which has been recorded on at least an interval scale. The technique may

be applied to single or multiple explanatory variables and also categorical explanatory variables that have

been appropriately coded. Please refer to the many available books for statistics for further explanation of OLS.

Real data can be used by reading "csv" or "Excel" files.The data here can be easily modified to suit your
application,

for example reading the power output every hour from a power plant for a long period of time, say 24 Hrs.

In the example below, we have two inputs (Input_1 and Input_2) and one output.The time is 24Hrs period.
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In [2]:

    Hrs  Input_1  Input_2  Output 
0     1     2.75      5.3    1464 
1     2     2.50      5.3    1394 
2     3     2.50      5.3    1357 
3     4     2.50      5.3    1293 
4     5     2.50      5.4    1256 
5     6     2.50      5.6    1254 
6     7     2.50      5.5    1234 
7     8     2.25      5.5    1195 
8     9     2.25      5.5    1159 
9    10     2.25      5.6    1167 
10   11     2.00      5.7    1130 
11   12     2.00      5.9    1075 
12   13     2.00      6.0    1047 
13   14     1.75      5.9     965 
14   15     1.75      5.8     943 
15   16     1.75      6.1     958 
16   17     1.75      6.2     971 
17   18     1.75      6.1     949 
18   19     1.75      6.1     884 
19   20     1.75      6.1     866 
20   21     1.75      5.9     876 
21   22     1.75      6.2     822 
22   23     1.75      6.2     704 
23   24     1.75      6.1     719 

from pandas import DataFrame
from sklearn import linear_model
import tkinter as tk 
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

System = {'Hrs': [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24],
          'Input_1':[2.75,2.5,2.5,2.5,2.5,2.5,2.5,2.25,2.25,2.25,2,2,2,1.75,1.75,1.75,
                     1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75],
          'Input_2':[5.3,5.3,5.3,5.3,5.4,5.6,5.5,5.5,5.5,5.6,5.7,5.9,6,5.9,
                     5.8,6.1,6.2,6.1,6.1,6.1,5.9,6.2,6.2,6.1],
          'Output': [1464,1394,1357,1293,1256,1254,1234,1195,1159,1167,1130,1075,1047,
                     965,943,958,971,949,884,866,876,822,704,719]        
                }

df = DataFrame(System,columns=['Hrs','Input_1','Input_2','Output']) 

# Print our Data Table for clarity and check

print(df)
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In [3]:

Our Equation for our Linear Regression
From the Intercept and Coefficients, our equation becomes as follows:

The Equation is:

Output = Intercept + Input_1 * X1 + Input_2 * X2

Displayong Ordinary Least-Squares (OLS)
Statistics
Here we need to import the stat models as shown below and printing statistics summary of the OLS.

Intercept:  
 1798.4039776258546 
Coefficients:  
 [ 345.54008701 -250.14657137] 

X = df[['Input_1','Input_2']].astype(float)

# here we have 2 input variables for multiple regression.

# If you want to use one variable for simple linear regression, then use:

# X = df['Input_1'], for example. Alternatively, you may add additional variables 

# within the brackets.

# The output variable (what we are trying to predict).

Y = df['Output'].astype(float)

# Using sklearn

regr = linear_model.LinearRegression()
regr.fit(X, Y)

print('Intercept: \n', regr.intercept_)
print('Coefficients: \n', regr.coef_)
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In [4]:

C:\Users\ORANGE\Anaconda3\lib\site-packages\numpy\core\fromnumeric.py:2389: 
FutureWarning: Method .ptp is deprecated and will be removed in a future ver
sion. Use numpy.ptp instead. 
 return ptp(axis=axis, out=out, **kwargs) 

                           OLS Regression Results                           
============================================================================
== 
Dep. Variable:                 Output   R-squared:                       0.8
98 
Model:                            OLS   Adj. R-squared:                  0.8
88 
Method:                 Least Squares   F-statistic:                     92.
07 
Date:                Tue, 03 Sep 2019   Prob (F-statistic):           4.04e-
11 
Time:                        14:05:01   Log-Likelihood:                -134.
61 
No. Observations:                  24   AIC:                             27
5.2 
Df Residuals:                      21   BIC:                             27
8.8 
Df Model:                           2                                        
Covariance Type:            nonrobust                                        
============================================================================
== 
                coef    std err          t      P>|t|      [0.025      0.97
5] 
----------------------------------------------------------------------------
-- 
const       1798.4040    899.248      2.000      0.059     -71.685    3668.4
93 
Input_1      345.5401    111.367      3.103      0.005     113.940     577.1
40 
Input_2     -250.1466    117.950     -2.121      0.046    -495.437      -4.8
56 
============================================================================
== 
Omnibus:                        2.691   Durbin-Watson:                   0.5
30 
Prob(Omnibus):                  0.260   Jarque-Bera (JB):                1.5
51 
Skew:                          -0.612   Prob(JB):                        0.4
61 
Kurtosis:                       3.226   Cond. No.                         39
4. 
============================================================================
== 

import statsmodels.api as sm

X = sm.add_constant(X)
model = sm.OLS(Y, X).fit()
predictions = model.predict(X)

print_model = model.summary()

print(print_model)
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From OLS table above we get the constant value as well as the intercept and the coefficients for our equation.

Warnings: 
[1] Standard Errors assume that the covariance matrix of the errors is corre
ctly specified. 
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In [ ]:

 
# Using Tkinter Object(s) or widgets for our Graphical User Interface (GUI)

root= tk.Tk()

canvas1 = tk.Canvas(root, width = 500, height = 300)
canvas1.pack()

Intercept_result = ('Intercept: ', regr.intercept_)
label_Intercept = tk.Label(root, text=Intercept_result, justify = 'center')
canvas1.create_window(260, 220, window=label_Intercept)

Coefficients_result  = ('Coefficients: ', regr.coef_)
label_Coefficients = tk.Label(root, text=Coefficients_result, justify = 'center')
canvas1.create_window(260, 240, window=label_Coefficients)

# New_Input_1 label and input box

label1 = tk.Label(root, text='Type Input_1: ')
canvas1.create_window(100, 100, window=label1)

entry1 = tk.Entry (root) # create 1st entry box
canvas1.create_window(270, 100, window=entry1)

# New_Input_2 label and input box

label2 = tk.Label(root, text=' Type Input_2: ')
canvas1.create_window(120, 120, window=label2)

entry2 = tk.Entry (root) # create 2nd entry box
canvas1.create_window(270, 120, window=entry2)

def values(): 
    global New_Input_1 # our 1st input variable
    New_Input_1 = float(entry1.get()) 
    
    global New_Input_2 # our 2nd input variable
    New_Input_2 = float(entry2.get()) 
    
    Prediction_result  = ('Predicted Output: ', regr.predict([[New_Input_1 ,New_Input_2]]))
    label_Prediction = tk.Label(root, text= Prediction_result, bg='orange')
    canvas1.create_window(260, 280, window=label_Prediction)
    
# Using button to call the 'values' command above   
    
button1 = tk.Button (root, text='Predict Output',command=values, bg='orange') 

canvas1.create_window(270, 150, window=button1)
 

# plot 1st scatter

figure3 = plt.Figure(figsize=(5,4), dpi=100)
ax3 = figure3.add_subplot(111)
ax3.scatter(df['Input_1'].astype(float),df['Output'].astype(float), color = 'r')
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In [ ]:

scatter3 = FigureCanvasTkAgg(figure3, root) 
scatter3.get_tk_widget().pack(side=tk.RIGHT, fill=tk.BOTH)
ax3.legend() 
ax3.set_xlabel('Input_1')
ax3.set_title('Input_1 Vs. Output')

# plot 2nd scatter

figure4 = plt.Figure(figsize=(5,4), dpi=100)
ax4 = figure4.add_subplot(111)
ax4.scatter(df['Input_2'].astype(float),df['Output'].astype(float), color = 'g')
scatter4 = FigureCanvasTkAgg(figure4, root) 
scatter4.get_tk_widget().pack(side=tk.RIGHT, fill=tk.BOTH)
ax4.legend() 
ax4.set_xlabel('Input_2')
ax4.set_title('Input_2 Vs. Output')

root.mainloop()

### Run the program and the Tkinter window shown below is displayed.

To check, we have entered the values 2.75 for Input_1 and 5.3 for Input_2.

The output or the predicted output is shown to be 1422.862 which is very close to the 
output value in the above data.



 

 

 

 

Tkinter window for the program 
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Machine Learning
What is Machine Learning? A definition.

Machine learning is an application of artificial intelligence (AI) that provides systems the ability to automatically
learn and improve from experience without being explicitly programmed. Machine learning focuses on the
development of computer programs that can access data and use it learn for themselves.

The process of learning begins with observations or data, such as examples, direct experience, or instruction,in
order to look for patterns in data and make better decisions in the future based on the examples that we
provide.

The primary aim is to allow the computers to learn automatically without human intervention or assistance and
adjust actions accordingly.

Some machine learning methods:

Machine learning algorithms are often categorized as supervised or unsupervised.

Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled
examples to predict future events.

Starting from the analysis of a known training dataset, the learning algorithm produces an inferred function to
make predictions about the output values. The system is able to provide targets for any new input after
sufficient training.

The learning algorithm can also compare its output with the correct, intended output and find errors in order to
modify the model accordingly.

In contrast, unsupervised machine learning algorithms are used when the information used to train is neither
classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden
structure from unlabeled data.

The system doesn’t figure out the right output, but it explores the data and can draw inferences from datasets to
describe hidden structures from unlabeled data.

Semi-supervised machine learning algorithms fall somewhere in between supervised and unsupervised
learning, since they use both labeled and unlabeled data for training – typically a small amount of labeled data
and a large amount of unlabeled data. The systems that use this method are able to considerably improve
learning accuracy.

Usually, semi-supervised learning is chosen when the acquired labeled data requires skilled and relevant
resources in order to train it / learn from it. Otherwise, acquiringunlabeled data generally doesn’t require
additional resources.

Reinforcement machine learning algorithms is a learning method that interacts with its environment by
producing actions and discovers errors or rewards. Trial and error search and delayed reward are the most
relevant characteristics of reinforcement learning. This method allows machines and software agents to
automatically determine the ideal behavior within a specific context in order to maximize its performance.

Simple reward feedback is required for the agent to learn which action is best; this is known as the
reinforcement signal. Machine learning enables analysis of massive quantities of data. While it generally
delivers faster, more accurate results in order to identify profitable opportunities or dangerous risks, it may also
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require additional time and resources to train it properly. Combining machine learning with AI and cognitive
technologies can make it even more effective in processing large volumes of information.

Here, I we will use Decision Tree and Random Forest algorithm as an examples of machine learning.

To plot the decision tree, we need to download the package 'graphviz'.

Using Anaconda prompt with the internet connected,type:

conda install graphviz.

graphviz version is 2.38. or later.

Also we need to download 'pydotplus' using the same procedure above, type, conda install pydotplus.

Pydotplus version is 2.0.2 or later.

Adding Path To Graphviz
Inspite of the fact that graphviz will be successfully downloaded using Anaconda prompt, it is noticed that
graphviz will not

work with Error message displayed " cannot find graphviz executable file".

To solve this problem, Path should be added manually as follows:

From the Control Panel go to System and Security then System then Advanced Setting then Environment
Variables, and:

Click on Path and click on Edit.

Go to the end of the line and put ; (is a must), then write after ; the following:

C:\Users\ORANGE\Anaconda3\Library\bin\graphviz

NOTE: IN MY COMPUTER I HAVE THE main folder titled 'ORANGE' BUT YOURS IS DIFFERENT.
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In [4]:

# Decision Tree example

# import required packages

from sklearn.tree import DecisionTreeClassifier
import pandas as pd
import numpy as np
from sklearn import tree
import collections

# Data here is given as an example, but nevertheless it reflects real situation.

# create a matrix including the data

#  Data: All Data here are fictitious

#  Pressure(psi)  Height(in)  Label
#  8              8           High 
#  50             40          High
#  8              9           Low
#  15             12          High
#  9              9.8         Low

# Creat Data

data = [[8,8,'High'],[50,40,'High'],[8,9,'Low'],[15,12,'High'],[9,9.8,'Low']]

# generating a dataframe from the matrix

df = pd.DataFrame(data, columns = ['Pressure','Height','Label'])

# defining predictors, here we need to define what are the predictors i.e the inputs

X = df[['Pressure','Height']]

# definig the target variable and mapping it to 1 for High and 0 for Low

y = df['Label'].replace({'High':1, 'Low':0})

# instantiating the model

tree = DecisionTreeClassifier() 

# fitting the model

model = tree.fit(X,y)
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In [2]:

Out[2]:

# Plotting the Tree

from sklearn.externals.six import StringIO  
from sklearn.tree import export_graphviz
import pydotplus
from IPython.display import Image

dot_data = StringIO()  

export_graphviz(
    model, 
    out_file = dot_data,  
    filled=True, rounded=True, proportion=False,
    special_characters=True, 
    feature_names=X.columns,
    class_names=["High", "Low"])  

graph = pydotplus.graph_from_dot_data(dot_data.getvalue())

# now how we change the Tree Colors

# //////////////////////////////Tree Color Changing //////////////////////////////

#graph = pydotplus.graph_from_dot_data(dot_data)
nodes = graph.get_node_list()
edges = graph.get_edge_list()

colors = ('yellow', 'blue')
edges = collections.defaultdict(list)

for edge in graph.get_edge_list():
    edges[edge.get_source()].append(int(edge.get_destination()))

for edge in edges:
    edges[edge].sort()    
    for i in range(2):
        dest = graph.get_node(str(edges[edge][i]))[0]
        dest.set_fillcolor(colors[i])

# ///////////////////////////////////////////////////////////////////////////////////

# Here how we can modify the size of the tree displayed

graph.write_png('original_tree.png')
graph.set_size('"5,5!"')
graph.write_png('resized_tree.png')
# Show Tree
Image(graph.create_png())
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In [5]:

In [ ]:

In [ ]:

Low 

# Prediction
a=np.array
prediction = model.predict([[5,9]])
if prediction == 1:
    print("High")
else:
    print("Low")
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In [2]:

In [3]:

['setosa' 'versicolor' 'virginica'] 
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width 
(cm)'] 

#  Random Forest 
is flexible, easy to use machine learning algorithm that produces great results most of 
the time. 
It is also one of the most used algorithms because it’s simplicity and the fact that it 
can be used for both classification and regression tasks which form the majority of 
current machine learning systems. 
We will discuss random forest in classification, since classification is sometimes 
considered the building block of machine learning.

In the example, we are going to use Iris dataset already available, within the many 
datasets in sklearn.The Iris flower dataset is rather small (consisting of only 150 
evenly distributed samples), and is well behaved which makes it ideal for this study.

#  Iris dataset is used for flower classification.
# Iris has four flower species identified as:
## 1- Setosa
## 2- Versicolor
## 3- Virginica
## The flowers are identified by it's petal length and width as well 
as the sepal 
## length and width, all measured in cm.
## For other applications, the dataset can be easily modified to 
suit your application 
## and can be loaded easily from Excel or text documents.

# First we need to Import scikit-learn dataset library

from sklearn import datasets

# Load dataset whuch is Iris in this case

iris = datasets.load_iris()

# print the labels species, they are setosa, versicolor and virginica.
# The labels are in the dataset

print(iris.target_names)

# print the names of the four features

print(iris.feature_names)
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In [4]:

In [5]:

[[5.1 3.5 1.4 0.2] 
 [4.9 3.  1.4 0.2] 
 [4.7 3.2 1.3 0.2] 
 [4.6 3.1 1.5 0.2] 
 [5.  3.6 1.4 0.2]] 
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 
 2 2] 

Out[5]:

sepal length sepal width petal length petal width species

0 5.1 3.5 1.4 0.2 0

1 4.9 3.0 1.4 0.2 0

2 4.7 3.2 1.3 0.2 0

3 4.6 3.1 1.5 0.2 0

4 5.0 3.6 1.4 0.2 0

# Print the iris data (only the first 5 records), just to make sure that 
# We have loaded the dataset correctly
# These are petal and sepal length and width all in cm

print(iris.data[0:5])

# The iris species are encoded as:
# (0:setosa, 1:versicolor, 2:virginica)
print(iris.target)

# Create a DataFrame for the given iris dataset and print 
# Some rows of the dataset.
    
import pandas as pd

data=pd.DataFrame({
    'sepal length':iris.data[:,0],
    'sepal width':iris.data[:,1],
    'petal length':iris.data[:,2],
    'petal width':iris.data[:,3],
    'species':iris.target
})
data.head()
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In [6]:

In [7]:

In [8]:

In [9]:

Accuracy: 1.0 

[2] 

# The data must be divided into training and test sets, 
# We need to import train_test_split function

from sklearn.model_selection import train_test_split

# These are the Features

X=data[['sepal length', 'sepal width', 'petal length', 'petal width']]
y=data['species']  # These are the Labels

# Split dataset into training set and test set

# Divide the dataset into 70% training and 30% testsets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

#Import Random Forest Model

from sklearn.ensemble import RandomForestClassifier

#Create a Gaussian Classifier

clf=RandomForestClassifier(n_estimators=100)

#Train the model using the training sets y_pred=clf.predict(X_test)
clf.fit(X_train,y_train)

y_pred=clf.predict(X_test)

#Import scikit-learn metrics module for accuracy calculation

from sklearn import metrics

# Check Model Accuracy, how often is the classifier correct?

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

# Check prediction

flower=[3,5,4,2] # petal, sepal length and width in cm

class_code = clf.predict([[3,5,4,2]])

print(class_code)
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In [10]:

In [11]:

In [12]:

[2 3 0 1] 

['sepal length (cm)'] 

Out[12]:

petal width (cm)     0.484043 
petal length (cm)    0.388840 
sepal length (cm)    0.100376 
sepal width (cm)     0.026741 
dtype: float64

import numpy as np
from sklearn.preprocessing import LabelEncoder
labels = np.asarray(iris.feature_names)
le = LabelEncoder()
le.fit(labels)

# apply encoding to labels

labels = le.transform(labels)
print(labels)

# we have encoded the classes, now Decoding The Class

decoded_class = le.inverse_transform(class_code)

print (decoded_class)

import pandas as pd
feature_imp=pd.Series(clf.feature_importances_,
                      index=iris.feature_names).sort_values(ascending=False)
feature_imp
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In [13]:

In [14]:

In [15]:

No handles with labels found to put in legend. 

# Make a bar plot to see the importance of the features

import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# Creating a bar plot
sns.barplot(x=feature_imp, y=feature_imp.index)
# Add labels to your graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title("Visualizing Important Features")
plt.legend()
plt.show()

# From the above bar chart, it can be seen that the Feature sepal width has the 
# lower importance among the others.
# So, we can remove and select the remaining 3-features.

# We will generate a model on the selected remaining features and train the model

# Import train_test_split function

from sklearn.model_selection import train_test_split

# Split dataset into features and labels

# Removed feature is "sepal length"

X=data[['petal length', 'petal width','sepal length']]
y=data['species']                                       
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.70, random_state=5)
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In [16]:

In [17]:

Using Decision Tree
In [21]:

Accuracy: 0.9523809523809523 

# N_estimators in Random Forest

# n_estimators represents the number of trees in the forest. Usually the higher the number 
# trees the better to learn 
# the data. However, adding a lot of trees can slow down the training process considerably.
# N_estimator is between 50 and 200.

# Create a Gaussian Classifier

clf=RandomForestClassifier(n_estimators=100)

#Train the model using the training sets y_pred=clf.predict(X_test)

clf.fit(X_train,y_train)

# prediction on test set

y_pred=clf.predict(X_test)

#Import scikit-learn metrics module for accuracy calculation

from sklearn import metrics

# Model Accuracy, how often is the classifier correct?

print("Accuracy:",metrics.accuracy_score(y_test, y_pred))

# From the above accuracy, it is seen that after removing the least important feature
# (sepal length), the accuracy of our model is increased. 
# This is because we removed a noise data.

# We will re-import the necessary packages (libraries) for clarity

import sklearn.datasets as datasets
import pandas as pd

# We have loaded Iris DataSet already
iris=datasets.load_iris()

# Our DataFrame already given as data above

y=iris.target
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In [23]:

In [24]:

Out[23]:

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, 
            max_features=None, max_leaf_nodes=None, 
            min_impurity_decrease=0.0, min_impurity_split=None, 
            min_samples_leaf=1, min_samples_split=2, 
            min_weight_fraction_leaf=0.0, presort=False, random_state=None, 
            splitter='best')

Out[24]:

from sklearn.tree import DecisionTreeClassifier
dtree=DecisionTreeClassifier()
dtree.fit(X_train,y_train)

from sklearn.externals.six import StringIO  
from IPython.display import Image  
from sklearn.tree import export_graphviz
import pydotplus
dot_data = StringIO()
export_graphviz(dtree, out_file=dot_data,  
                filled=True, rounded=True,
                special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())  
Image(graph.create_png())
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In [1]:

In [4]:

In [5]:

Out[4]:

𝑥

Out[5]:

2𝑥 + 11𝑦

# Algebra and Symbolic Math with SymPy
The mathematical problems and solutions in programs have all involved the manipulation of 
numbers. But there’s another way math is taught, learned, and practiced, and that’s in 
terms of symbols and the operations between them.

Just think of all the x's and y's in a typical algebra problem. We refer to this type of 
math as symbolic math. You know the  factorize of x^3+ 3x^2+ 3x + 1 problems in math 
class. We’ll use SymPy—a Python library that lets you write expressions containing 
symbols and perform operations on them.

The SymPy home page is:

http://sympy.org

and provides the full (and up-to-date) documentation for this library.

# To Start With, first Call init_printing. 
# This tells sympy to display expressions in a nicer format.

import sympy
sympy.init_printing()

# Find 2*x-x as below
2 * x - x

# Find the results of the folllowing: 

y = Symbol('y')

x + y + x + 10*y
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In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

Out[6]:

2𝑦 + 3𝑧

Out[7]:

2𝑦 + 10

Out[8]:

16

Out[9]:

3𝑥 + 𝑦2

Out[10]:

10

# We can abbreviate the creation of multiple symbolic variables using the symbols function.
# For example, to create the symbolic variables x, y and z, we can use:

# Note:

x, y, z = sympy.symbols('x,y,z')
# And evaluate the following expression:
x + 2*y + 3*z - x

# Once we have completed our term manipulation, we sometimes 
# like to insert numbers for variables.

# This can be done using the subs method.
# Find x+2*y for x = 10

(x + 2*y).subs(x, 10)

# Find:
(x + 2*y).subs(x, 10).subs(y, 3)

# We can also substitute a symbolic variable for another one such as in this 
# example where y is replaced 
# with x before we substitute x with the number 2.

myterm = 3*x + y**2
myterm

myterm.subs(x, y).subs(y, 2)
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In [11]:

In [12]:

In [13]:

In [17]:

Out[11]:

1

10

Out[12]:

45

67

Out[13]:

−
383

670

Out[17]:

2

3

# Numeric types:

# SymPy has the numeric types Rational and Real Number. 
# The Rational class represents a rational number as a pair 
# of two integers: the numerator and the denominator, so Rational(1,2) represents 1/2, 
# Rational(5,2) represents 5/2 and so on.

from sympy import Rational   # We havealready imported Sympy.
a = Rational(1, 10)
# Find a
a

b = Rational(45, 67)
b

a-b

# Note that the Rational class works with rational expressions exactly. 
# This is in contrast to Python’s standard float data type which 
# uses floating point representation to 
# approximate (rational) numbers.

# We can convert the sympy.Rational type into a Python floating point variable
# using float or the evalf method of the Rational object. 
# The evalf method can take an argument that specifies how many digits 
# should be computed for the floating point approximation (not all of those may be used by 
# floating point type of course).

c = Rational(2, 3)
c
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In [18]:

In [19]:

In [17]:

In [18]:

In [19]:

In [20]:

In [21]:

Out[18]:

0.6666666666666666

Out[19]:

0.66666666666666666667

Out[17]:

cos (𝑥)

Out[18]:

9 + 20𝑥 + 3𝑥8

Out[19]:

4

Out[20]:

32

Out[21]:

263.66015625

float(c)

c.evalf(20) # To 20 digits

# Differentiation and Integration
# SymPy is capable of carrying out differentiation and integration of many functions:

from sympy import Symbol, exp, sin, sqrt, diff
x = Symbol('x')
y = Symbol('y')
diff(sin(x), x)

diff(10 + 3*x + 4*y + 10*x**2 + x**9, x)

diff(10 + 3*x + 4*y + 10*x**2 + x**9, y)

diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1)

diff(10 + 3*x + 4*y + 10*x**2 + x**9, x).subs(x,1.5)
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In [22]:

In [23]:

In [24]:

In [25]:

In [26]:

Ordinary differential equations:
SymPy has inbuilt support for solving several kinds of ordinary differential equation via its dsolve command. We
need to set up the ODE and pass it as the first argument, eq. The second argument is the function f(x) to solve
for. An optional third argument is hint, influences the method that dsolve uses. some methods are better-suited
to certain classes of ODEs, or will express the solution more simply, than others.

To set up the ODE solver, we need a way to refer to the unknown function for which we are solving, as well as
its derivatives. The Function and Derivative classes facilitate this.

Out[22]:

1512𝑥2𝑦5

x/sqrt(x**2 + y**2 + σ**2) 

Out[24]:

𝑥3

3

Out[25]:

8

3

Out[26]:

2.6666666666666665

diff(diff(3*x**4*y**7, x, x), y, y)

r = sqrt(x**2 + y**2)
sigma = Symbol('σ')
def phi(x,y,sigma):
    return sqrt(x**2 + y**2 + sigma**2)

mydfdx= x / sqrt(r**2 + sigma**2)
print(diff(phi(x, y, sigma), x))

# Integration uses a similar syntax. 
# For the indefinite case, specify the function and the variable with respect 
# to which the integration is performed:

from sympy import integrate
integrate(x**2, x)

integrate(x**2, (x, 0, 2))

float(integrate(x**2, (x, 0, 2)))
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In [27]:

In [29]:

In [ ]:

Plotting Using SymPy

Out[27]:

𝑦(𝑥) = 𝐶1𝑒
−5𝑥

Out[29]:

𝑦(𝑥) = +
𝐶1𝑒

−5𝑥

5

12

5

from sympy import Symbol, dsolve, Function, Derivative, Eq
y = Function("y")
x = Symbol('x')
y_ = Derivative(y(x), x)
dsolve(y_ + 5*y(x), y(x))

# Note how dsolve has introduced a constant of integration, C1. 
# It will introduce as many constants as are 
# required, and they will all be named Cn, where n is an integer. 
# Note also that the first argument to dsolve is taken to be equal to 
# zero unless we use the Eq() function to specify otherwise:

dsolve(Eq(y_ + 5*y(x), 12), y(x))
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In [4]:

In [5]:

Out[4]:

<sympy.plotting.plot.Plot at 0x8c95cf0>

Out[5]:

<sympy.plotting.plot.Plot at 0x8c95190>

# With SymPy, you can just tell SymPy the equation of the line you want to plot, 
# and the graph will be created for you. Let’s plot a line whose equation is given by
# y = 2x + 3:

from sympy.plotting import plot
from sympy import Symbol
x = Symbol('x')
plot(2*x+3)
# Note that we didn’t have to call the show() function to show the graphs 
because this is done automatically by SymPy.

# Now, let’s say that you wanted to limit the values of 'x' in the preceding graph to lie 
# in the range −5 to 5. 
# (instead of −10 to 10). You’d do that as follows:
    
plot((2*x + 3), (x, -5, 5))   
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In [7]:

In [8]:

In [ ]:

Plotting Expressions Input by the User
The expression that you pass to the plot() function must be expressed in terms of x only. For example, earlier
we plotted y = 2x + 3, which we entered to the plot function as simply 2x + 3. If the expression were not
originally in this form, we’d have to rewrite it. Of course, we could do this manually, outside the program. But
what if you want to write a program that allows its users to graph any expression?. If the user enters an
expression in the form of 2x + 3y − 6, say, we have to first convert it. The solve() function will help us here. Let’s
see an example below:

Out[7]:

<sympy.plotting.plot.Plot at 0x8d67990>

# You can use other keyword arguments in the plot() function, such as title to enter 
# a title or xlabel and ylabel
# to label the x-axis and the y-axis, respectively. 
# The following plot() function specifies the preceding three keyword arguments.

plot(2*x + 3, (x, -5, 5), title='A Line', xlabel='x', ylabel='2x+3')

# The show keyword argument mentionedabove allows us to specify whether 
# we want the graph to be displayed. 
# Passing show=False will cause the graph tonot be displayed when you 
# call the plot() function:
p = plot(2*x + 3, (x, -5, 5), title='A Line', xlabel='x', ylabel='2x+3', show=False)

# You will see that no graph is shown. The label p refers to the plot that is
# created, so you can now call p.show() to display the graph. You can also save
# the graph as an image file using the save() method, as follows:

 p.save('line.png')
    
# This will save the plot to a file line.png in the current directory.    
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In [11]:

In the above example, we use the sympify() function to convert the input expression to a SymPy object and we
create a Symbol object to represent 'y' so that we can tell SymPy which variable we want to solve the equation
for. Then we solvethe expression to find y in terms of x by specifying y as the second argument to the solve()
function. Solution, is returned in terms of x, which is what we need for plotting.

Notice that this final expression is stored in a list, so before we can use it, we’ll have to extract it from the list as
below:

In [12]:

Plotting Multiple Functions
You can enter multiple expressions when calling the SymPy plot function to plot more than one expression on
the same graph. For example, the following code plots two lines at once,below:

Enter an expression: 2*x+3*y-6 

Out[11]:

[-2*x/3 + 2]

Out[12]:

-2*x/3 + 2

from sympy import solve, sympify
expr = input('Enter an expression: ')
# Say, wewill enter the expression: 2*x + 3*y - 6
expr = sympify(expr)
y = Symbol('y')
solve(expr, y) 

solutions = solve(expr, 'y')
expr_y = solutions[0]
expr_y
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In [21]:

This example brings out another difference between plotting in matplotlib and in SymPy. Here, using SymPy,
both lines are the same color, whereas matplotlib would have automatically made the lines different colors. To
set different colors for each line with SymPy, we’ll need to perform some extra steps, as shown in the following
code, which also adds a legend to the graph:

In [22]:

Further Examples In SymPy

Out[21]:

<sympy.plotting.plot.Plot at 0x8e8b910>

from sympy.plotting import plot
from sympy import Symbol
x = Symbol('x')
plot(2*x+3, 3*x+1)

from sympy.plotting import plot
from sympy import Symbol
x = Symbol('x')
p = plot(2*x+3, 3*x+1, legend=True, show=False)
p[0].line_color = 'b'
p[1].line_color = 'r'
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In [5]:

In [6]:

In [7]:

In [8]:

In [10]:

In [11]:

Out[5]:

sin (𝑥)𝑒𝑥

Out[6]:

2
⎯⎯

√ 𝜋
⎯⎯

√
2

Out[7]:

1

Out[8]:

[− , ]2
⎯⎯

√ 2
⎯⎯

√

Out[10]:

𝑦(𝑡) = + ( + )𝐶2𝑒
−𝑡 𝐶1

𝑡

2
𝑒𝑡

Out[11]:

{
+ : 1, − + : 1

}
3

2

17
⎯ ⎯⎯⎯√
2

17
⎯ ⎯⎯⎯√
2

3

2

# Compute ∫(e^x.sin(x) + e^x.cos(x)) dx

integrate(exp(x)*sin(x) + exp(x)*cos(x), x)

# Compute ∫sin(x^limit(sin(x)/x, x, 0)2)) dx from (-infinity) to (+infinity)

integrate(sin(x**2), (x, -oo, oo))

# Find lim(sin(x)/x) when x-->0
limit(sin(x)/x, x, 0)

# Solve x^2 - 2 = 0
solve(x**2 - 2, x)

# Solve the differential equation yʹʹ − y = e^t
y = Function('y')
dsolve(Eq(y(t).diff(t, t) - y(t), exp(t)), y(t))

# Find the eigenvalues of [1 2]
#                         [2 2] 
Matrix([[1, 2], [2, 2]]).eigenvals()
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In [12]:

In [30]:

In [22]:

In [23]:

In [24]:

Simplification

In [66]:

In [67]:

Out[12]:

(𝑧)2
⎯⎯

√ 𝑧
⎯⎯

√ 𝑗𝜈− 1
2

𝜋
⎯⎯

√

Out[30]:

815915283247897734345611269596115894272000000000

Out[22]:

'0.2999999999999999888977698'

Out[23]:

0.2999999999999999888977698

Out[24]:

0.3

Out[67]:

2 − 𝑥 (𝑥 + 1) − 2𝑥𝑥2

# Rewrite the Bessel function Jν(z) in terms of the spherical Bessel function jν(z)
besselj(nu, z).rewrite(jn)

import sympy
sympy.factorial(40)

"%.25f" % 0.3  # create a string represention with 25 decimals

sympy.Float(0.3, 25)

sympy.Float('0.3', 25)

expr = 2 * (x**2 - x) - x * (x + 1)

expr
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In [68]:

In [69]:

In [70]:

In [71]:

In [72]:

In [73]:

In [74]:

In [75]:

Out[68]:

𝑥 (𝑥 − 3)

Out[69]:

𝑥 (𝑥 − 3)

Out[70]:

2 − 𝑥 (𝑥 + 1) − 2𝑥𝑥2

Out[72]:

2 sin (𝑥) cos (𝑥)

Out[73]:

sin (2𝑥)

Out[75]:

𝑒𝑥𝑒𝑦

sympy.simplify(expr)

expr.simplify()

expr

expr = 2 * sympy.cos(x) * sympy.sin(x)

expr

sympy.trigsimp(expr)

expr = sympy.exp(x) * sympy.exp(y)

expr
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In [76]:

Expand

In [77]:

In [78]:

In [79]:

In [80]:

In [81]:

In [82]:

In [83]:

Out[76]:

𝑒𝑥+𝑦

Out[78]:

+ 3𝑥 + 2𝑥2

Out[79]:

sin (𝑥) cos (𝑦) + sin (𝑦) cos (𝑥)

Out[81]:

log (𝑎) + log (𝑏)

Out[82]:

𝑖 sin (𝑎) + cos (𝑎)𝑒𝑏 𝑒𝑏

Out[83]:

𝑎𝑥𝑏𝑥

sympy.powsimp(expr)

expr = (x + 1) * (x + 2)

sympy.expand(expr)

sympy.sin(x + y).expand(trig=True)

a, b = sympy.symbols("a, b", positive=True)

sympy.log(a * b).expand(log=True)

sympy.exp(I*a + b).expand(complex=True)

sympy.expand((a * b)**x, power_exp=True)
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In [84]:

Factor

In [85]:

In [86]:

In [87]:

In [88]:

In [89]:

In [90]:

Out[84]:

𝑒𝑖𝑎𝑥𝑒−𝑖𝑏𝑥

Out[85]:

(𝑥 − 1) (𝑥 + 1)

Out[86]:

𝑥 (sin (𝑧) + cos (𝑦))

Out[87]:

log ( )
𝑎

𝑏

Out[89]:

𝑥𝑦𝑧 + 𝑥 + 𝑦

Out[90]:

𝑥 (𝑦𝑧 + 1) + 𝑦

sympy.exp(I*(a-b)*x).expand(power_exp=True)

sympy.factor(x**2 - 1)

sympy.factor(x * sympy.cos(y) + sympy.sin(z) * x)

sympy.logcombine(sympy.log(a) - sympy.log(b))

expr = x + y + x * y * z

expr.factor()

expr.collect(x)
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In [91]:

In [92]:

In [93]:

Together, apart, cancel

In [94]:

In [95]:

In [96]:

Numerical evaluation

In [103]:

Out[91]:

𝑥 + 𝑦 (𝑥𝑧 + 1)

Out[93]:

(sin (𝑥) + cos (𝑥)) (− sin (𝑦) + cos (𝑦))

Out[94]:

− +
1

𝑥 + 2

1

𝑥 + 1

Out[95]:

𝑦 + 1

𝑦 (𝑥 + 1)

Out[96]:

1

𝑥 + 1

Out[103]:

4.14159265358979

expr.collect(y)

expr = sympy.cos(x + y) + sympy.sin(x - y)

expr.expand(trig=True).collect([sympy.cos(x),sympy.sin(x)]).collect(sympy.cos(y)-sympy.sin(

sympy.apart(1/(x**2 + 3*x + 2), x)

sympy.together(1 / (y * x + y) + 1 / (1+x))

sympy.cancel(y / (y * x + y))

sympy.N(1 + pi)
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In [104]:

In [105]:

In [106]:

In [107]:

In [108]:

In [109]:

In [110]:

In [111]:

In [112]:

In [113]:

Out[104]:

3.1415926535897932384626433832795028841971693993751

Out[105]:

𝑥 + 0.3183099

Out[107]:

[0, 0.774, 0.642, 0.722, 0.944, 0.205, 0.974, 0.977, −0.87, −0.695

Out[109]:

0.773942685266709

Out[113]:

array([ 0.        ,  0.77394269,  0.64198244,  0.72163867,  0.94361635, 
        0.20523391,  0.97398794,  0.97734066, -0.87034418, -0.69512687])

sympy.N(pi, 50)

(x + 1/pi).evalf(7)

expr = sympy.sin(pi * x * sympy.exp(x))

[expr.subs(x, xx).evalf(3) for xx in range(0, 10)]

expr_func = sympy.lambdify(x, expr)

expr_func(1.0)

expr_func = sympy.lambdify(x, expr, 'numpy')

import numpy as np

xvalues = np.arange(0, 10)

expr_func(xvalues)
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Calculus

In [114]:

In [115]:

In [116]:

In [117]:

In [118]:

In [119]:

In [120]:

In [121]:

Out[115]:

𝑓(𝑥)
𝑑

𝑑𝑥

Out[116]:

𝑓(𝑥)
𝑑2

𝑑𝑥2

Out[117]:

𝑓(𝑥)
𝑑3

𝑑𝑥3

Out[119]:

𝑔(𝑥, 𝑦)
∂2

∂𝑥∂𝑦

Out[120]:

𝑔(𝑥, 𝑦)
∂5

∂ ∂𝑥3 𝑦2

f = sympy.Function('f')(x)

sympy.diff(f, x)

sympy.diff(f, x, x)

sympy.diff(f, x, 3)

g = sympy.Function('g')(x, y)

g.diff(x, y)

g.diff(x, 3, y, 2)  # equivalent to s.diff(g, x, x, x, y, y)

expr = x**4 + x**3 + x**2 + x + 1
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In [122]:

In [123]:

In [124]:

In [125]:

In [126]:

In [127]:

In [128]:

In [129]:

In [130]:

Out[122]:

4 + 3 + 2𝑥 + 1𝑥3 𝑥2

Out[123]:

2 (6 + 3𝑥 + 1)𝑥2

Out[125]:

6𝑦(𝑥 + 1)2

Out[127]:

𝑦 cos ( ) cos (𝑥𝑦) − sin ( ) sin (𝑥𝑦)
𝑥

2

1

2

𝑥

2

Out[129]:

+
polygamma (0,− + )2𝑥 𝜋
⎯⎯

√ 𝑥

2

1

2

2Γ(− + )𝑥

2

1

2

log (2)2𝑥 𝜋
⎯⎯

√

Γ(− + )𝑥

2

1

2

expr.diff(x)

expr.diff(x, x)

expr = (x + 1)**3 * y ** 2 * (z - 1)

expr.diff(x, y, z)

expr = sympy.sin(x * y) * sympy.cos(x / 2)

expr.diff(x)

expr = sympy.special.polynomials.hermite(x, 0)

expr.diff(x).doit()

d = sympy.Derivative(sympy.exp(sympy.cos(x)), x)
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In [131]:

In [132]:

Integrals

In [133]:

In [134]:

In [135]:

In [136]:

In [137]:

Out[131]:

𝑑

𝑑𝑥
𝑒cos (𝑥)

Out[132]:

− sin (𝑥)𝑒cos (𝑥)

Out[134]:

∫ 𝑓(𝑥) 𝑑𝑥

Out[135]:

𝑓(𝑥) 𝑑𝑥∫
𝑏

𝑎

Out[136]:

− cos (𝑥)

Out[137]:

cos (𝑎) − cos (𝑏)

d

d.doit()

a, b = sympy.symbols("a, b")
x, y = sympy.symbols('x, y')
f = sympy.Function('f')(x)

sympy.integrate(f)

sympy.integrate(f, (x, a, b))

sympy.integrate(sympy.sin(x))

sympy.integrate(sympy.sin(x), (x, a, b))



9/4/2019 SymPy

localhost:8888/notebooks/THE BOOK/4-SymPy And ODE/SymPy.ipynb 21/30

In [138]:

In [139]:

In [140]:

In [141]:

In [142]:

In [143]:

In [144]:

In [145]:

Out[138]:

𝜋
⎯⎯

√
2

Out[140]:

𝑎𝑐𝜋
⎯⎯

√

Out[141]:

∫ sin (𝑥 cos (𝑥)) 𝑑𝑥

Out[143]:

− cos (𝑥 )𝑒
−𝑦

𝑒
𝑦

Out[145]:

+ 𝑦 + 𝑥
𝑥3

3
𝑥2 𝑦2

sympy.integrate(sympy.exp(-x**2), (x, 0, oo))

a, b, c = sympy.symbols("a, b, c", positive=True)

sympy.integrate(a * sympy.exp(-((x-b)/c)**2), (x, -oo, oo))

sympy.integrate(sympy.sin(x * sympy.cos(x)))

expr = sympy.sin(x*sympy.exp(y))

sympy.integrate(expr, x)

expr = (x + y)**2

sympy.integrate(expr, x)
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In [146]:

In [147]:

Series

In [148]:

In [149]:

In [150]:

In [151]:

In [152]:

Out[146]:

+ +
𝑦𝑥3

3

𝑥2𝑦2

2

𝑥𝑦3

3

Out[147]:

7

6

Out[150]:

𝑓(0) + 𝑥 + + + +𝑓(𝑥)
𝑑

𝑑𝑥

|

|
|
|
𝑥=0

𝑥2

2
𝑓(𝑥)

𝑑2

𝑑𝑥2

|

|

|
|
𝑥=0

𝑥3

6
𝑓(𝑥)

𝑑3

𝑑𝑥3

|

|

|
|
𝑥=0

𝑥4

24
𝑓(𝑥)

𝑑4

𝑑𝑥4

|

|

|
|
𝑥=0

𝑥5

120

Out[152]:

𝑓( ) + (𝑥 − ) +  ( ; 𝑥 → )𝑥0 𝑥0 𝑓( )
𝑑

𝑑𝜉1
𝜉1
|

|
|
|
=𝜉1 𝑥0

(𝑥 − )𝑥0
2 𝑥0

sympy.integrate(expr, x, y)

sympy.integrate(expr, (x, 0, 1), (y, 0, 1))

x = sympy.Symbol("x")

f = sympy.Function("f")(x)

sympy.series(f, x)

x0 = sympy.Symbol("{x_0}")

f.series(x, x0, n=2)
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In [153]:

In [154]:

In [155]:

In [156]:

In [157]:

In [158]:

In [159]:

Out[153]:

(𝑥 − ) + 𝑓( )𝑥0 𝑓( )
𝑑

𝑑𝜉1
𝜉1
|

|
|
|
=𝜉1 𝑥0

𝑥0

Out[154]:

1 − + +  ( )
𝑥2

2

𝑥4

24
𝑥6

Out[155]:

𝑥 − + +  ( )
𝑥3

6

𝑥5

120
𝑥6

Out[156]:

1 + 𝑥 + + + + +  ( )
𝑥2

2

𝑥3

6

𝑥4

24

𝑥5

120
𝑥6

Out[157]:

1 − 𝑥 + − + − +  ( )𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Out[159]:

1 − 𝑥𝑦 + ( − ) + (− + ) +  ( )𝑥2 𝑦2
1

2
𝑥3

5𝑦3

6

𝑦

2
𝑥4

f.series(x, x0, n=2).removeO()

sympy.cos(x).series()

sympy.sin(x).series()

sympy.exp(x).series()

(1/(1+x)).series()

expr = sympy.cos(x) / (1 + sympy.sin(x * y))

expr.series(x, n=4)
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In [160]:

In [161]:

Limits

In [162]:

In [163]:

In [164]:

In [165]:

In [166]:

In [167]:

Out[160]:

cos (𝑥) − 𝑥𝑦 cos (𝑥) + cos (𝑥) − cos (𝑥) +  ( )𝑥2𝑦2
5𝑥3

6
𝑦3 𝑦4

Out[161]:

− + − + − + − + + − −
61𝑥5

120
𝑦5

5𝑥5

12
𝑦3

𝑦𝑥5

24

2𝑥4

3
𝑦4

𝑥4𝑦2

2

𝑥4

24

5𝑥3

6
𝑦3

𝑦𝑥3

2
𝑥2𝑦2

𝑥2

2

Out[162]:

1

Out[165]:

− sin (𝑥)

Out[166]:

cos (𝑥)

expr.series(y, n=4)

expr.series(y).removeO().series(x).removeO().expand()

sympy.limit(sympy.sin(x) / x, x, 0)

f = sympy.Function('f')
x, h = sympy.symbols("x, h")

diff_limit = (f(x + h) - f(x))/h

sympy.limit(diff_limit.subs(f, sympy.cos), h, 0)

sympy.limit(diff_limit.subs(f, sympy.sin), h, 0)

expr = (x**2 - 3*x) / (2*x - 2)
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In [168]:

In [169]:

In [170]:

Sums and products

In [171]:

In [172]:

In [173]:

In [174]:

In [175]:

Out[170]:

( , −1)
1

2

Out[173]:

∑
𝑛=1

∞
1

𝑛2

Out[174]:

𝜋2

6

p = sympy.limit(expr/x, x, oo)

q = sympy.limit(expr - p*x, x, oo)

p, q

n = sympy.symbols("n", integer=True)

x = sympy.Sum(1/(n**2), (n, 1, oo))

x

x.doit()

x = sympy.Product(n, (n, 1, 7))
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In [176]:

In [177]:

In [178]:

In [179]:

Equations

In [180]:

In [181]:

In [182]:

In [183]:

Out[176]:

𝑛∏
𝑛=1

7

Out[177]:

5040

Out[179]:

− 1𝑒𝑥

Out[181]:

[−3, 1]

Out[183]:

[ (−𝑏 + ) , − (𝑏 + )]
1

2𝑎
−4𝑎𝑐 + 𝑏2
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√ 1

2𝑎
−4𝑎𝑐 + 𝑏2
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

√

x

x.doit()

x = sympy.Symbol("x")

sympy.Sum((x)**n/(sympy.factorial(n)), (n, 1, oo)).doit().simplify()

x = sympy.symbols("x")

sympy.solve(x**2 + 2*x - 3)

a, b, c = sympy.symbols("a, b, c")

sympy.solve(a * x**2 + b * x + c, x)
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In [184]:

In [185]:

In [186]:

In [187]:

In [188]:

In [189]:

In [190]:

In [191]:

Out[184]:

[− , ]
3𝜋

4

𝜋

4

Out[185]:

[−LambertW( )]
1

2

Out[186]:

[RootOf ( − + 1, 0), RootOf ( − + 1, 1), RootOf ( − + 1, 2), Roo𝑥5 𝑥2 𝑥5 𝑥2 𝑥5 𝑥2

Out[187]:

1

Out[189]:

[{𝑥 : − , 𝑦 : }]
1

3

2

3

sympy.solve(sympy.sin(x) - sympy.cos(x), x)

sympy.solve(sympy.exp(x) + 2 * x, x)

sympy.solve(x**5 - x**2 + 1, x)

1 #s.solve(s.tan(x) - x, x)

eq1 = x + 2 * y - 1
eq2 = x - y + 1

sympy.solve([eq1, eq2], [x, y], dict=True)

eq1 = x**2 - y
eq2 = y**2 - x

sols = sympy.solve([eq1, eq2], [x, y], dict=True)
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In [192]:

In [193]:

Linear algebra

In [194]:

In [195]:

In [196]:

In [197]:

Out[192]:

[
{𝑥 : 0, 𝑦 : 0} , {𝑥 : 1, 𝑦 : 1} ,

{
𝑥 : − + , 𝑦 : − −

}
,
{

1

2

𝑖3
⎯⎯

√
2

1

2

𝑖3
⎯⎯

√
2

Out[193]:

[True, True, True, True]

Out[194]:

[ ]
1

2

Out[195]:

[ ]1 2

Out[196]:

[ ]
1

3

2

4

Out[197]:








0

10

20

1

11

21

2

12

22

3

13

23








sols

[eq1.subs(sol).simplify() == 0 and eq2.subs(sol).simplify() == 0 for sol in sols]

sympy.Matrix([1,2])

sympy.Matrix([[1,2]])

sympy.Matrix([[1, 2], [3, 4]])

sympy.Matrix(3, 4, lambda m,n: 10 * m + n)
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In [198]:

In [199]:

In [200]:

In [201]:

In [202]:

In [203]:

In [204]:

In [205]:

In [206]:

In [207]:

Out[200]:

[ ]
𝑎

𝑐

𝑏

𝑑

Out[201]:

[ ]
+ 𝑏𝑐𝑎2

𝑎𝑐 + 𝑐𝑑

𝑎𝑏 + 𝑏𝑑

𝑏𝑐 + 𝑑2

Out[203]:

[ ]
𝑎 + 𝑏𝑥1 𝑥2

𝑐 + 𝑑𝑥1 𝑥2

Out[206]:

[ ]
1

𝑞

𝑝

1

a, b, c, d = sympy.symbols("a, b, c, d")

M = sympy.Matrix([[a, b], [c, d]])

M

M * M

x = sympy.Matrix(sympy.symbols("x_1, x_2"))

M * x

p, q = sympy.symbols("p, q")

M = sympy.Matrix([[1, p], [q, 1]])

M

b = sympy.Matrix(sympy.symbols("b_1, b_2"))
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In [208]:

In [209]:

In [210]:

In [211]:

In [212]:

In [213]:

In [ ]:

Out[208]:

[ ]
𝑏1

𝑏2

Out[209]:








( + 1) −𝑏1
𝑝𝑞

−𝑝𝑞+1
𝑝𝑏2

−𝑝𝑞+1

− +
𝑞𝑏1

−𝑝𝑞+1
𝑏2

−𝑝𝑞+1








Out[211]:








−𝑏1
𝑝(− 𝑞+ )𝑏1 𝑏2

−𝑝𝑞+1
− 𝑞+𝑏1 𝑏2

−𝑝𝑞+1








Out[213]:








( + 1) −𝑏1
𝑝𝑞

−𝑝𝑞+1
𝑝𝑏2

−𝑝𝑞+1

− +
𝑞𝑏1

−𝑝𝑞+1
𝑏2

−𝑝𝑞+1








b

x = M.solve(b)
x

x = M.LUsolve(b)

x

x = M.inv() * b

x



Learning by examples with Anaconda 3 / 2019 - July

12

5 - Linear Optimization
Using
PulP



9/5/2019 First Simple Example

localhost:8888/notebooks/THE BOOK/5- Optimization Using Pulp/5-1 First Simple Example/First Simple Example.ipynb 1/2

Simple Example
Suppose that we have the equation given below and we want to maximize the variable z i.e the objective
function.

Objective function

Constraints:

We can solve the problem graphically but when the number of variables increases the problem becomes very
complicated. Here PulP comes to simplify our optimization problem.

𝑧(𝑚𝑎𝑥) = 5 + 4𝑥1 𝑥2

= + ≤ 5𝐶1 𝑥1 𝑥2

= 10 ∗ + 6 ∗ ≤ 45𝐶2 𝑥1 𝑥2

, ≥ 0𝑥1 𝑥2

In [8]:

In [9]:

In [10]:

# Import Pulp package

import pulp

z = pulp.LpProblem('Problem', pulp.LpMaximize)  # Objective function to be maximized

# Constraints

x1 = pulp.LpVariable('x1', lowBound=0)
x2 = pulp.LpVariable('x2', lowBound=0)

# Objective function, we use the += combined to add the objective and constraints

# to our problem.

z += 5*x1 + 4*x2

z += x1 + x2 <= 5
z += 10*x1 + 6*x2 <= 45
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In [11]:

In [15]:

In [16]:

In [17]:

In [ ]:

Out[11]:

Problem: 
MAXIMIZE 
5*x1 + 4*x2 + 0 
SUBJECT TO 
_C1: x1 + x2 <= 5 

_C2: 10 x1 + 6 x2 <= 45 

VARIABLES 
x1 Continuous 
x2 Continuous

Out[15]:

1

x1 3.75 
x2 1.25 

23.75 

# To see our problem in details.
z

# Now solving the problem.

z.solve()

# Now we can view our objective value (z) and the values of our variables, x1 and x2.

for variable in z.variables():
    print(format(variable.name),variable.varValue)

# Printing objective value

print(pulp.value(z.objective))
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Company X Problem
The Company X wants to know, How many products the company should make monthly. This company makes,
tables, sofas and chairs.

The Company needs to pay  monthly, this includes,  hours of work (  per hour).
Prices of each product:

Tables:  per unit.
Sofas:  per unit.
Chairs:  per unit.

Variables
 = Table
 = Sofa
 = Chair

Objective function

This equation is simplified to:

Constraints:
(Wood): 
(Cloth): 
(Saw): 
(Cut Cloth): 
(Sand): 
(Inky): 
(Assembly): 

Demand

(Tables): 
(Sofas): 
(Chairs): 

x1, x2, x3 >=0

$75000 1540 $48.70

$400

$750

$240

𝑋1

𝑋2

𝑋3

𝑧(𝑚𝑎𝑥) = (400 − 100) + (750 − 75 − 175) + (240 − 40) − 75000𝑋1 𝑋2 𝑋3

𝑧(𝑚𝑎𝑥) = 300 + 500 + 200 − 75000𝑋1 𝑋2 𝑋3

𝐶1 10 + 7.5 + 4 ≤ 4350𝑋1 𝑋2 𝑋3

𝐶2 10 ≤ 2500𝑋2

𝐶3 0.5 + 0.4 + 0.5 ≤ 280𝑋1 𝑋2 𝑋3

𝐶4 0.4 ≤ 140𝑋2

𝐶5 0.5 + 0.1 + 0.5 ≤ 280𝑋1 𝑋2 𝑋3

𝐶6 0.4 + 0.2 + 0.4 ≤ 140𝑋1 𝑋2 𝑋3

𝐶7 1 + 1.5 + 0.5 ≤ 700𝑋1 𝑋2 𝑋3

𝐶8 ≤ 300𝑋1

𝐶9 ≤ 180𝑋2

𝐶10 ≤ 400𝑋3

In [1]:

import pulp
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In [2]:

In [3]:

In [4]:

z = pulp.LpProblem("Company X", pulp.LpMaximize)
x1 = pulp.LpVariable("x1", lowBound=0)
x2 = pulp.LpVariable("x2", lowBound=0)
x3 = pulp.LpVariable("x3", lowBound=0)

# Objective function

z += 300*x1 + 500*x2 + 200*x3 - 75000

# Constraints

z += 10*x1 + 7.5*x2 + 4*x3 <= 4350
z += 10*x2 <= 2500
z += 0.5*x1 + 0.4*x2 + 0.5*x3 <= 280
z += 0.4*x2 <= 140
z += 0.5*x1 + 0.1*x2 + 0.5*x3 <= 280
z += 0.4*x1 + 0.2*x2 + 0.4*x3 <= 140
z += 1*x1 + 1.5*x2 + 0.5*x3 <= 700

# Demand

z += 1*x1 <= 300
z += 1*x2 <= 180
z += 1*x3 <= 400
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In [5]:

In [7]:

In [8]:

In [ ]:

Out[5]:

Company X: 
MAXIMIZE 
300*x1 + 500*x2 + 200*x3 + -75000 
SUBJECT TO 
_C1: 10 x1 + 7.5 x2 + 4 x3 <= 4350 

_C2: 10 x2 <= 2500 

_C3: 0.5 x1 + 0.4 x2 + 0.5 x3 <= 280 

_C4: 0.4 x2 <= 140 

_C5: 0.5 x1 + 0.1 x2 + 0.5 x3 <= 280 

_C6: 0.4 x1 + 0.2 x2 + 0.4 x3 <= 140 

_C7: x1 + 1.5 x2 + 0.5 x3 <= 700 

_C8: x1 <= 300 

_C9: x2 <= 180 

_C10: x3 <= 400 

VARIABLES 
x1 Continuous 
x2 Continuous 
x3 Continuous

Out[7]:

'Optimal'

Out[8]:

(260.0, 180.0, 0.0, 93000.0)

# Problem formulation for clarity

z

# Status of the prblem

pulp.LpStatus[z.solve()]

# Solving for the objective function and the variables 

pulp.value(x1), pulp.value(x2), pulp.value(x3), pulp.value(z.objective)



                                                                  Power Company 

Operations research (often referred to as management science) is simply a scientific 

approach to decision making that seeks to best design and operate a system, usually under  

conditions requiring the allocation of scarce resources. 

By a system, we mean an organization of interdependent components that work together to 

accomplish the goal of the system.  

For example, Ford Motor Company is a system whose goal consists of maximizing the profit 

that can be earned by producing quality vehicles. 

The term operations research was coined during World War II when British military leaders 

asked scientists and engineers to analyze several military problems such as the deployment 

of radar and the management of convoy, bombing, antisubmarine, and mining operations. 

The scientific approach to decision making usually involves the use of one or more 

mathematical models. A mathematical model is a mathematical representation of an actual 

situation that may be used to make better decisions or simply to understand the actual 

situation better. 

The following example should clarify many of the key terms used to describe mathematical 

models. 

The example below is taken from the book Operations Research APPLICATIONS AND 

ALGORITHMS by: 

Wayne L.Winston FOURTH EDITION INDIANA UNIVERSITY-2004.  

 The example was solved by using Excel and Lingo/Lindo softwares, here I will be using PulP. 

Powerco has three electric power plants that supply the needs of four cities. Each power 

plant can supply the following numbers of kilowatt-hours (kwh) of electricity:  

Plant_1 = 35 million 

Plant_2 = 50 million 

Plant_3 = 40 million 

The peak power demands in these cities, which occur at the same time (2 P.M.), are as 

follows (in kwh):  

City1 = 45 million 

City2 = 20 million 

City3 = 30 million 

City4 = 30 million 



The costs of sending 1 million kwh of electricity from plant to city depend on the distance 

the electricity must travel. 

Formulate an LP to minimize the cost of meeting each city’s peakpower demand. 

Solution: 

To formulate Powerco’s problem as an LP, we begin by defining a variable for each decision 

that Powerco must make. 

 Because Powerco must determine how much power is sent from each plant to each city, we 

define i = 1, 2, 3, for plants and j = 1, 2, 3, 4, for cities. 

xij = number of (million) kwh produced at plant i and sent to city j. 

Note: Each city will receive power from all plants. The table below shows the requirements. 

TABLE 1:  

Supply, Demand requirements, Shipping Costs for Powerco: 

From                                    City 1     City 2        City 3     City 4     Supply(million kwh) 

Plant 1                                  $8          $6              $10        $9           35 

Plant 2                                  $9          $12            $13         $7           50 

Plant 3                                  $14        $9              $16         $5           40 

Demand (million KWh)      45          20              30            30 

In terms of these variables, the total cost of supplying the peak power demands to cities 1–4 

may be written as: 

8x11 + 6x12 + 10x13 + 9x14  (Cost of shipping power from plant 1) 

+ 9x21 + 12x22 + 13x23 + 7x24 (Cost of shipping power from plant 2) 

+ 14x31 + 9x32 + 16x33 + 5x34 (Cost of shipping power from plant 3) 

Powerco faces two types of constraints: 

First: 

The total power supplied by each plant cannot exceed the plant’s capacity.  

For example, the total amount of power sent from plant1 to the four cities cannot exceed 35 

million kwh. 

Each variable with first subscript 1 represents a shipment of power from plant 1, so we may 

express this restriction by the LP constraint: 

x11 + x12 + x13 + x14 <= 35 



In a similar fashion, we can find constraints that reflect plant 2’s and plant 3’s capacities. 

Because power is supplied by the power plants, each is a supply point. Analogously, a 

constraint that ensures that the total quantity shipped from a plant does not exceed plant 

capacity is a supply constraint.  

The LP formulation of Powerco’s problem contains the following three supply constraints: 

 x11 + x12 + x13 + x14 <= 35 (Plant 1 supply constraint) 

x21 + x22 + x23 + x24 <= 50 (Plant 2 supply constraint) 

x31 + x32 + x33 + x34 <= 40 (Plant 3 supply constraint) 

Second: 

We need constraints that ensure that each city will receive sufficient power to meet its peak 

demand. Each city demands power, so each is a demand point. For example,city 1 must 

receive at least 45 million kwh. Each variable with second subscript 1 represents a shipment 

of power to city 1, so we obtain the following constraint: 

x11 + x21 + x31 >= 45 

Similarly, we obtain a constraint for each of cities 2, 3, and 4. A constraint that ensures that 

a location receives its demand is a demand constraint. Powerco must satisfy the following 

four demand constraints: 

 x11 + x21 + x31 >= 45 (City 1 demand constraint) 

x12 + x22 + x32 >= 20 (City 2 demand constraint) 

x13 + x23 + x33 >= 30 (City 3 demand constraint) 

x14 + x24 + x34 >= 30 (City 4 demand constraint) 

Because all the xij’s must be nonnegative, we add the sign restrictions xij >= 0 (i = 1, 2,3 for 

plants and j = 1, 2, 3, 4 for cties). 

Combining the objective function, supply constraints, demand constraints, and sign 

restrictions yields the following LP formulation of Powerco’s problem: 

min z = 8*x11 + 6*x12 + 10*x13 + 9*x14 + 9*x21 + 12*x22 + 13*x23 + 7*x24 + 14*x31 + 

9*x32 + 16*x33 + 5*x34 

s.t: 

 x11 + x12 + x13 + x14 <= 35 (Supply constraints) 

 x21 + x22 + x23 + x24 <= 50 

  x31 + x32 + x33 + x34 <= 40 



 x11 + x21 + x31 + x34 >= 45 (Demand constraints) 

x12 + x22 + x32 + x34 >= 20 

 x13 + x23 + x33 + x34 >= 30 

 x14 + x24 + x34 + x34 >= 30 

xij >= 0 (i = 1, 2, 3; j = 1, 2, 3, 4) 
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In [2]:

Then instantiate a problem class, we'll name it "My LP problem" and we're looking for an optimal minimum so
we use LpMinimize.

In [3]:

We then model our decision variables using the LpVariable class. In our example the variable xij had a lower
bound of 0.

In [4]:

The objective function and constraints are added to our model using the += operator, as usual.

The objective function is added first, then the individual constraints.

In [5]:

#                                   Power Company

import pulp

my_lp_problem = pulp.LpProblem("My LP Problem", pulp.LpMinimize)

# xij values are continuouse variables.

x11 = pulp.LpVariable('x11', lowBound=0, cat='Continuous')
x12 = pulp.LpVariable('x12', lowBound=0, cat='Continuous')
x13 = pulp.LpVariable('x13', lowBound=0, cat='Continuous')
x14 = pulp.LpVariable('x14', lowBound=0, cat='Continuous')
x21 = pulp.LpVariable('x21', lowBound=0, cat='Continuous')
x22 = pulp.LpVariable('x22', lowBound=0, cat='Continuous')
x23 = pulp.LpVariable('x23', lowBound=0, cat='Continuous')
x24 = pulp.LpVariable('x24', lowBound=0, cat='Continuous')
x31 = pulp.LpVariable('x31', lowBound=0, cat='Continuous')
x32 = pulp.LpVariable('x32', lowBound=0, cat='Continuous')
x33 = pulp.LpVariable('x33', lowBound=0, cat='Continuous')
x34 = pulp.LpVariable('x34', lowBound=0, cat='Continuous')

# Objective function

my_lp_problem += 8*x11+6*x12+10*x13+9*x14+9*x21+12*x22+13*x23+7*x24+14*x31+9*x32+
16*x33+5*x34, "Z"

# Constraints

my_lp_problem += x11 + x12 + x13 + x14 <= 35
my_lp_problem += x21 + x22 + x23 + x24 <= 50
my_lp_problem += x31 + x32 + x33 + x34 <= 40
my_lp_problem += x11 + x21 + x31   >= 45
my_lp_problem += x12 + x22 + x32   >= 20
my_lp_problem += x13 + x23 + x33   >= 30
my_lp_problem += x14 + x24 + x34   >= 30
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We have now constructed our problem and we can have a look at it.

In [6]:

In [7]:

We have also checked the status of the solver, there are 5 status codes:

Not Solved: Status prior to solving the problem.
Optimal: An optimal solution has been found.
Infeasible: There are no feasible solutions (e.g. if you set the constraints x <= 1 and x >=2).
Unbounded: The constraints are not bounded, maximising the solution will tend towards infinity (e.g. if the
only constraint was x >= 3).
Undefined: The optimal solution may exist but may not have been found.

Out[6]:

My LP Problem: 
MINIMIZE 
8*x11 + 6*x12 + 10*x13 + 9*x14 + 9*x21 + 12*x22 + 13*x23 + 7*x24 + 14*x31 + 
9*x32 + 16*x33 + 5*x34 + 0 
SUBJECT TO 
_C1: x11 + x12 + x13 + x14 <= 35 

_C2: x21 + x22 + x23 + x24 <= 50 

_C3: x31 + x32 + x33 + x34 <= 40 

_C4: x11 + x21 + x31 >= 45 

_C5: x12 + x22 + x32 >= 20 

_C6: x13 + x23 + x33 >= 30 

_C7: x14 + x24 + x34 >= 30 

VARIABLES 
x11 Continuous 
x12 Continuous 
x13 Continuous 
x14 Continuous 
x21 Continuous 
x22 Continuous 
x23 Continuous 
x24 Continuous 
x31 Continuous 
x32 Continuous 
x33 Continuous 
x34 Continuous

Out[7]:

'Optimal'

my_lp_problem

# Solving the Poweco problem

my_lp_problem.solve()
pulp.LpStatus[my_lp_problem.status]
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We can now view our variable values and the minimum value of Z i.e the total cost in $.

We can use the varValue method to retrieve the values of our variables xij, and the pulp.value function to view
the minimum value of the objective function.

In [8]:

In [9]:

In [ ]:

x11 0.0 
x12 10.0 
x13 25.0 
x14 0.0 
x21 45.0 
x22 0.0 
x23 5.0 
x24 0.0 
x31 0.0 
x32 10.0 
x33 0.0 
x34 30.0 

1020.0 

for variable in my_lp_problem.variables():
    print(format(variable.name),variable.varValue)

# Printing the total objective cost

print (pulp.value(my_lp_problem.objective))



Learning by examples with Anaconda 3 / 2019 - July

13

"The 'Formulation' of a problem is often more essential than its
solution, which may be merely a matter of mathematical or
experimental skills"

Albert Einstein
1876-1955

Introduction to Optimization
Numerical optimization is one of the most vital and common modern
applications of mathematics. It is considered a very important subject
and widely used in every engineering field, finance, industry
manufacturing etc.
Optimization is the problem of finding numerically the minimums (or
maximums or zeros) of a function. In this context, the function is called
cost function, or objective function, or energy.
Optimization is classified into Linear Optimization and Non-Linear
Op miza on. Linear op miza on covers 90% of the op miza on
problems.

1-Linear Programming (LP):
Linear Programming is a powerful modeling tool for optimization. It is a
mathematical model whose requirements are linear relationships.
Mathematical optimization or just optimization has two parts:

a- Objective function (or cost function) and,
b- constraints which define the set, in which we are looking for the

Softwares to solve optimization problems are available such as Google R,
Lindo/Lingo, Gams, Mathcad, Octave and many others.
In solving optimization problems, problem formulation is the most
important in writing the objective function and constraints.
We will use Pulp for linear optimization problems and SciPy for both
linear and non-linear optimization.
We need to download Pulp first as this library or module is not included
in Anaconda.
To download Pulp, open Anaconda Prompt and type after the prompt
sign >, with internet connected, the following:



Learning by examples with Anaconda 3 / 2019 - July

14

>pip install pulp
The version is 1.6.10 or later.

What is Pulp:
Pulp is a linear programming framework in Python. The aim of pulp is to
allow a practitioner or programmer to express Linear Programming (LP),
and Integer Programming (IP) models in python in a way similar to the
conventional mathematical notation.
Pulp can be interfaces with other solvers like, CPLEX, COIN, Gurobi,
COBYLA etc.
We will use Jupyter in Anaconda to solve optimization problems using
Pulp and SciPy.
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Optimization
of

Boiler Turbo Generators
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The Boiler/Turbo-Generators Example is taken from the book:
"Optimization Of Chemical Processes-2001".
By:
Thomas F. Edgar, David M. Himmelblau and Leon Lasdon.
The example is not solved but the optimization results are given. Here I
will solve the example using Pulp.
The example from11.4/Chapter-11/Page-435:

Boiler/ Turbo-Generator System Block Diagram
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Linear programming is often used in the design and operation of steam
systems in the chemical industry. The figure above shows a steam and
power system for a small power house fired by wood pulp.
To produce electric power, this system contains two turbo generators
whose characteris cs are listed in Table 11.4A. Turbine 1 is a double
extraction turbine with two intermediate streams leaving at 195 and 62
psi. The final stage produces condensate that is used as boiler feed
water. Turbine 2 is a single - extraction turbine with one intermediate
stream at 195 psi and an exit stream leaving at 62 psi with no
condensate being formed. The first turbine is more efficient due to the
energy released from the condensation of steam, but it cannot produce
as much power as the second turbine. Excess steam may bypass the
turbines to the two levels of steam through pressure-reducing valves.
Table 11.4B lists informa on about the different levels of steam, and
Table 11.4C gives the demands on the system.
To meet the electric power demand, electric power may be purchased
from another producer with a minimum base of 12,000 kW. If the
electric power required to meet the system demand is less than this
base, the power that is not used will be charged at a penalty cost.
Table 11.4D gives the costs of fuel for the boiler and additional electric
power to operate the utility system.
The system shown in the above figure may be modeled as a linear
constraints and combined with a linear objective function. The objective
is to minimize the operating cost of the system by choice of steam flow
rates and power generated or purchased, subject to the demands and
restrictions on the system.
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Optimal Results

The Jupyter program shows the optimization procedure and as it seen
that the results of using Pulp are very close to the values given in the
above table E11.4E.
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In [1]:

In [2]:

In [3]:

In [4]:

## First Import PulP

import pulp

## Name The Program and Functionality (Minimize)

Model = pulp.LpProblem("My LP Problem", pulp.LpMinimize)

## Name Variables and it's Categories using Cat

I1 = pulp.LpVariable('I1',   lowBound=0, cat='Continuous')
I2 = pulp.LpVariable('I2',   lowBound=0, cat='Continuous')
HE1 = pulp.LpVariable('HE1', lowBound=0, cat='Continuous')
HE2 = pulp.LpVariable('HE2', lowBound=0, cat='Continuous')
LE1 = pulp.LpVariable('LE1', lowBound=0, cat='Continuous')
LE2 = pulp.LpVariable('LE2', lowBound=0, cat='Continuous')
C   = pulp.LpVariable('C',   lowBound=0, cat='Continuous')
BF1 = pulp.LpVariable('BF1', lowBound=0, cat='Continuous')
BF2 = pulp.LpVariable('BF2', lowBound=0, cat='Continuous')
HPS = pulp.LpVariable('HPS', lowBound=0, cat='Continuous')
MPS = pulp.LpVariable('MPS', lowBound=0, cat='Continuous')
LPS = pulp.LpVariable('LPS', lowBound=0, cat='Continuous')
P1  = pulp.LpVariable('P1',  lowBound=0, cat='Continuous')
P2  = pulp.LpVariable('P2',  lowBound=0, cat='Continuous')
PP  = pulp.LpVariable('PP',  lowBound=0, cat='Continuous')
EP  = pulp.LpVariable('Ep',  lowBound=0, cat='Continuous')

## Objective Function to be Minimized

Model += 0.00261 * HPS + 0.0239 * PP + 0.00983 * EP, "f"

# Constraints are as follows:
## Turbine-1
## Turbine-2
## Material Balances
## Power Purchased
## Demand
## Energy Balances
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In [5]:

# Turbine1

Model += P1  <= 6250.0
Model += P1  >= 2500.0
Model += HE1 <= 192000.0
Model += C <= 62000.0
Model += I1 - HE1 <= 132000.0

# Turbine2

Model += P2  <= 9000.0
Model += P2  >= 3000.0
Model += I2  <= 244000.0
Model += LE2 <= 142000.0

# Material Balances

Model += HPS - I1 - I2 - BF1 == 0
Model += I1 + I2 + BF1 - C - MPS - LPS == 0
Model += I1 - HE1 - LE1 - C == 0
Model += I2 - HE2 - LE2 == 0
Model += HE1 + HE2 + BF1 - BF2 - MPS == 0
Model += LE1 + LE2 + BF2 - LPS == 0

# Power Purchased

Model += EP + PP >= 12000.0

# Demand

Model += MPS >= 271536.0
Model += LPS >= 100623.0
Model += P1 + P2 + PP >= 24550.0

# Energy Balances

Model += 1359.8 * I1 - 1267.8 * HE1 - 1251.4 * LE1 - 192 * C - 3413 * P1 == 0
Model += 1359.8 * I2 - 1267.8 * HE2 - 1251.4 * LE2 - 3413 * P2 == 0 

## Print Out The Model For Clarity
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In [6]:

Out[6]:

My LP Problem: 
MINIMIZE 
0.00983*Ep + 0.00261*HPS + 0.0239*PP + 0.0 
SUBJECT TO 
_C1: P1 <= 6250 

_C2: P1 >= 2500 

_C3: HE1 <= 192000 

_C4: C <= 62000 

_C5: - HE1 + I1 <= 132000 

_C6: P2 <= 9000 

_C7: P2 >= 3000 

_C8: I2 <= 244000 

_C9: LE2 <= 142000 

_C10: - BF1 + HPS - I1 - I2 = 0 

_C11: BF1 - C + I1 + I2 - LPS - MPS = 0 

_C12: - C - HE1 + I1 - LE1 = 0 

_C13: - HE2 + I2 - LE2 = 0 

_C14: BF1 - BF2 + HE1 + HE2 - MPS = 0 

_C15: BF2 + LE1 + LE2 - LPS = 0 

_C16: Ep + PP >= 12000 

_C17: MPS >= 271536 

_C18: LPS >= 100623 

_C19: P1 + P2 + PP >= 24550 

_C20: - 192 C - 1267.8 HE1 + 1359.8 I1 - 1251.4 LE1 - 3413 P1 = 0 

_C21: - 1267.8 HE2 + 1359.8 I2 - 1251.4 LE2 - 3413 P2 = 0 

VARIABLES 
BF1 Continuous 
BF2 Continuous 
C Continuous 
Ep Continuous 
HE1 Continuous 
HE2 Continuous 
HPS Continuous 
I1 Continuous 

Model
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In [7]:

In [8]:

In [9]:

In [ ]:

I2 Continuous 
LE1 Continuous 
LE2 Continuous 
LPS Continuous 
MPS Continuous 
P1 Continuous 
P2 Continuous 
PP Continuous

Out[7]:

'Optimal'

BF1 0.0 
BF2 0.0 
C 8169.7397 
Ep 760.71409 
HE1 128159.0 
HE2 143377.0 
HPS 380328.74 
I1 136328.74 
I2 244000.0 
LE1 0.0 
LE2 100623.0 
LPS 100623.0 
MPS 271536.0 
P1 6250.0 
P2 7060.7141 
PP 11239.286 

1268.7547663046998 

## Solve The Model and Check Model Status

Model.solve()
pulp.LpStatus[Model.status]

## Print Model Results (Variables)

for variable in Model.variables():
    print(format(variable.name),variable.varValue)

## Print Total Cost Of The Objective function

print (pulp.value(Model.objective))
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6 - Linear and Non-Linear
Optimization

using
SciPy
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SciPy (Scientific Python) optimize provides functions for minimizing or 

maximizing objective functions, possibly subject to constraints.  

It includes solvers for nonlinear problems (with support for both local 

and global optimization algorithms), linear programming, constrained 

and nonlinear least-squares, root finding and curve fitting. 

Here, simple linear and nonlinear examples will be given as an 

introduction to show how to use SciPy in solving an optimization 

problem. The method can be modified easily for other applications. 

Example-1 / Linear Programming Problem: 

Three products can be manufactured either manually, semi-automatic or 

automatic.  

The manual production: 

 Require, 1 minute of qualified work, 40 minutes of non-qualified work 

and three minutes of assemblage. 

The semi-automatic method: 

Require, 4, 30 and 2 minutes. 

Fully automatic method: 

Require, 8, 20 and 4 minutes.  

A startup time of 4500 minutes of qualified work, 36000 minutes of 

nonqualified work and 2700 minutes for assembly. 

 The production costs are $70, $80 and $85 for the manual, semi-

automatic and automatic methods. The number of units to be produced 

is 999. 

It is required to minimize the cost function. 

Solution: 

The variables are the number of units x1, x2 and x3 to be built using 

each method (manual, semi-automatic and automatic). The cost to be 

minimized is the production cost and is given by: 

Production Cost = 70*x1 + 80*x2 + 85*x3. 

The objective function is, therefore, given by: 

Minimize f(x) = 70*x1 + 80*x2 + 85*x3 

Subject to: 

X1 + x2 + x3 = 999 

X1 + 4x2 + 8x3 <= 4500 

40*x1 + 30*x2 + 20*x3 <= 36000 
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3*x1 + 2*x2 + 4*x3 <= 2700 

X >= 0 

SciPy solution is given in Jupyter Notebook program. 

Example-2/Nonlinear Programming Problem: 

Pulp is dedicated to solve linear optimization problems, SciPy can be 

used to solve both linear and nonlinear problems. 

Suppose that we have the following problem. 

Minimize: x1*x4*(x1+x2+x3) + x3 

 Subject to: 

x1*x2*x3*x4≥25 

x1^2 + x2^2 + x3^2 + x4^2 = 40 

1 ≤ x1, x2, x3, x4 ≤ 5 

Initial guess is required, say x0 = (1,5,5,1) 

SciPy solution is given in Jupyter Notebook program. 

  



9/5/2019 Linear and Nonlinear Examples With SciPy

localhost:8888/notebooks/THE BOOK/6-SciPy/Linear and Nonlinear Examples With SciPy.ipynb 1/2

In [1]:

Optimal value: 73725.0  
X: [636. 330.  33.] 

##                                Linear and Non-Linear Examples

# Example-1 / Linear Programming.

import numpy as np
from scipy.optimize import linprog
from numpy.linalg import solve
A_eq = np.array([[1,1,1]])
b_eq = np.array([999])
A_ub = np.array([
[1, 4, 8],
[40,30,20],
[3,2,4]])
b_ub = np.array([4500, 36000,2700])
c = np.array([70, 80, 85])
res = linprog(c, A_eq=A_eq, b_eq=b_eq, A_ub=A_ub, b_ub=b_ub,
bounds=(0, None))
print('Optimal value:', res.fun, '\nX:', res.x)



9/5/2019 Linear and Nonlinear Examples With SciPy

localhost:8888/notebooks/THE BOOK/6-SciPy/Linear and Nonlinear Examples With SciPy.ipynb 2/2

In [5]:

Initial Objective: 16.0 
Final Objective: 49.49466354824061 
Solution 
x1 = 5.0 
x2 = 2.449466356243835 
x3 = 2.041221961170239 
x4 = 1.0 

# Example-2 / Non-Linear Programming.

import numpy as np 
from scipy.optimize import minimize
def objective(x):
    return x[0]*x[3]*(x[0]+x[1]+x[2])+x[2]
def constraint1(x):
    return x[0]*x[1]*x[2]*x[3]-25.0
def constraint2(x):
    sum_eq = 40.0
    for i in range(4):
        sum_eq = sum_eq - x[i]**2
        return sum_eq
# initial guesses
n = 4
x0 = np.zeros(n)
x0[0] = 1.0
x0[1] = 5.0
x0[2] = 5.0
x0[3] = 1.0
# show initial objective
print('Initial Objective: ' + str(objective(x0)))
# optimize
b = (1.0,5.0)
bnds = (b, b, b, b)
con1 = {'type': 'ineq', 'fun': constraint1}
con2 = {'type': 'eq', 'fun': constraint2}
cons = ([con1,con2])
solution = minimize(objective,x0,method='SLSQP',\
                    bounds=bnds,constraints=cons)
x = solution.x
# show final objective
print('Final Objective: ' + str(objective(x)))
# print solution
print('Solution')
print('x1 = ' + str(x[0]))
print('x2 = ' + str(x[1]))
print('x3 = ' + str(x[2]))
print('x4 = ' + str(x[3]))
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Appendix 

 
My work sheets with the PTC Community-USA/Mathcad 

Division 2010-2017 

- Mathcad Scriptable Control to calculate input impedance 

(3/5 Stars) 

- Optimization using Mathcad Prime 2.0 (5/5 Stars) 

- Ask Mathcad Prime 2.0 (5/5 Stars) 

- The Good Old Radio Design using Mathcad (5/5 Stars) 

- Powerful Electromagnet Design using Mathcad (5/5 Stars) 

- GSM Traffic Calculations with Mathcad Prime 2.0 (-) 

- Penumatic Conveying with Mathcad Prime 2.0 (-) 

- High Power Coaxial Cable with Mathcad Prime 2.0 (5/5 

Stars) 

- AC Circuit Performance with Mathcad 15 M10 (2/5 Stars) 

- Fuel Day Tank for Engine Generator Set with Mathcad 

Prime 2.0 (-) 

- Binary Genetic Algorithm With Mathcad Prime 2.0 

(5/5 Stars) 

- Factors A,B and C For Power Transformer/Mathcad 

Prime 4.0-Express (4/5 Stars) 

- Solving Engineering PSO Optimization Problem with 

Mathcad Prim 2.0 (5/5 Stars) 

- My First Oscillator 45-Years Ago with Mathcad Prime 

2.0 (5/5 Stars) 
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Python  - A Brief History  

Python, was originally conceptualized by Guido van Rossum in 

the late 1980s as a member of the National Research Institute of 

Mathematics and Computer Science. Initially, it was designed as a 

response to the ABC programming language that was also fore 

grounded in the Netherlands. Among the main features of Python 

compared to the ABC language was that Python had exception 

handling and was targeted for the Amoeba operating system (go 

Python!). 

Python is not named after the snake. It’s named after the British 

TV show Monty Python. 

Of course, Python, like other languages, has gone through a 

number of versions. Python 0.9.0 was first released in 1991. 

In 2000, Python 2.0 was released. This version of was more of an 

open-source project from members of the National Research 

Institute of Mathematics and Computer Science. This version of 

Python included list comprehensions, a full garbage collector, and 

it supported Unicode. 

Python 3.0 was the next version and was released in December of 

2008 (the latest version of Python is 3.6.4). 

The above is obtained from:  www.medium.com / by 

John Wolfe-Medium 

http://www.medium.com/



